Road Geometric Modeling Using a Novel Hierarchical Approach

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
Part of the Advances in Science, Technology & Innovation book series (ASTI)


Road geometric parameters are essential inputs for a wide range of geospatial applications, such as road accident analysis, intelligent transportation, traffic noise modeling, and vehicle navigation. Mobile laser scanners (MLS) provide accurate spatial data, thereby facilitating the easy and low-cost derivation of georeferenced object information.


  1. Baatz, M. (2000). Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Angewandte Geographische Informations verarbeitung, XII, 12–23.‏Google Scholar
  2. Bagheban-Shahri, F., Niazi, A., & Akrami, A. H. M. A. D. (2016). Quantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase and design new compounds by different chemometrics methods. Iranian Journal of Mathematical Chemistry, 7(1), 47–59.zbMATHGoogle Scholar
  3. Belton, D., & Lichti, D. D. (2006). Classification and segmentation of terrestrial laser scanner point clouds using local variance information. IAPRS, Xxxvi(5), 44–49.Google Scholar
  4. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.CrossRefGoogle Scholar
  5. Blaschke, T., & Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS, 6(1), 12–17.Google Scholar
  6. Boyko, A., & Funkhouser, T. (2011). Extracting roads from dense point clouds in large scale urban environment. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S2–S12.CrossRefGoogle Scholar
  7. Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. USA: Oreilly & Associates Inc.Google Scholar
  8. Brennan, R., & Webster, T. L. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.CrossRefGoogle Scholar
  9. Cánovas-García, F., & Alonso-Sarría, F. (2015). A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery. Geocarto International, 30(8), 937–961.CrossRefGoogle Scholar
  10. Chen, D., & He, X. (2015). Fast automatic three-dimensional road model reconstruction based on mobile laser scanning system. Optik-International Journal for Light and Electron Optics, 126(7), 725–730.CrossRefGoogle Scholar
  11. Comaneci, D., & Shift, P. M. M. (2002). A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5).‏Google Scholar
  12. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.zbMATHGoogle Scholar
  13. Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95 (pp. 39–43). IEEE.‏Google Scholar
  14. Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S., & Laurgeau, C. (2006). An integrated on-board laser range sensing system for on-the-way city and road modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(A).‏Google Scholar
  15. Hernández, J., & Marcotegui, B. (2009, September). Filtering of artifacts and pavement segmentation from mobile lidar data. In ISPRS Workshop Laser scanning 2009.Google Scholar
  16. Holgado-Barco, A., Gonzalez-Aguilera, D., Arias-Sanchez, P., & Martinez-Sanchez, J. (2014). An automated approach to vertical road characterisation using mobile LiDAR systems: Longitudinal profiles and cross-sections. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 28–37.CrossRefGoogle Scholar
  17. Huang, C. L., & Dun, J. F. (2008). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 8(4), 1381–1391.CrossRefGoogle Scholar
  18. Ibrahim, S., & Lichti, D. (2012). Curb-based street floor extraction from mobile terrestrial LiDAR point cloud. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B5.Google Scholar
  19. Ibrahim, M., & Pradhan, B. (2017). Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 733–747. Scholar
  20. Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88. Scholar
  21. Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544. Scholar
  22. Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Bejo, S. K. (2016). Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023. Scholar
  23. Im, J., Jensen, J. R., & Hodgson, M. E. (2008). Object-based land cover classification using high-posting-density LiDAR data. GIScience & Remote Sensing, 45(2), 209–228.CrossRefGoogle Scholar
  24. Jaakkola, A., Hyyppä, J., Hyyppä, H., & Kukko, A. (2008). Retrieval algorithms for road surface modelling using laser-based mobile mapping. Sensors, 8(9), 5238–5249.CrossRefGoogle Scholar
  25. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser (LiDAR) scanning data at catchment scale. Remote Sensing of Environment, 152, 150–165. Scholar
  26. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Manifestation of LiDAR derived parameters in spatial prediction of landslides using a novel ensemble evidential belief functions and support vector machine models in GIS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 674–689. Scholar
  27. Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2013). An automated algorithm for extracting road edges from terrestrial mobile LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 44–55.CrossRefGoogle Scholar
  28. Lam, J., Kusevic, K., Mrstik, P., Harrap, R., & Greenspan, M. (2010, May). Urban scene extraction from mobile ground based lidar data. In Proceedings of 3DPVT (pp. 1–8).‏Google Scholar
  29. Matkan, A. A., Hajeb, M., & Sadeghian, S. (2014). Road extraction from lidar data using support vector machine classification. Photogrammetric Engineering & Remote Sensing, 80(5), 409–422.CrossRefGoogle Scholar
  30. McElhinney, C. P., Kumar, P., Cahalane, C., & McCarthy, T. (2010, June). Initial results from European Road Safety Inspection (EURSI) mobile mapping project. In ISPRS Commission V Technical Symposium (pp. 440–445).‏Google Scholar
  31. Mezaal, M. R., & Pradhan, B. (2017). Data mining-aided automatic landslide detection using airborne laser scanning data in densely forested tropical areas. Korean Journal of Remote Sensing, 34(1), 45–74. Scholar
  32. Mezaal, M. R., & Pradhan, B. (2018). An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data. CATENA, 167, 147–159. Scholar
  33. Mezaal, M. R., Pradhan, B., & Rizeei, H. M. (2018). Improving landslide detection from airborne laser scanning data using optimized Dempster-Shafer. Remote Sensing, 10(7), 1029. Scholar
  34. Munoz, D., Vandapel, N., & Hebert, M. (2008). Directional associative markov network for 3-d point cloud classification.‏Google Scholar
  35. Pauly, M., Gross, M., & Kobbelt, L. P. (2002, October). Efficient simplification of point-sampled surfaces. In Proceedings of the Conference on Visualization’02 (pp. 163–170). IEEE Computer Society.‏Google Scholar
  36. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and QuickBird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1610–1622. Scholar
  37. Rees, W. G. (2000). The accuracy of digital elevation models interpolated to higher resolutions. International Journal of Remote Sensing, 21(1), 7–20.CrossRefGoogle Scholar
  38. Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors.‏Google Scholar
  39. Sameen, M. I., & Pradhan, B. (2017b). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405. Scholar
  40. Su, L. (2009). Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 407–413.CrossRefGoogle Scholar
  41. Tzotsos, A., & Argialas, D. (2008). Support vector machine classification for object-based image analysis. Object-Based Image Analysis, 663–677.‏Google Scholar
  42. Uriarte, A., Melin, P., & Valdez, F. (2015). An improved particle swarm optimization algorithm to optimize modular neural network architectures. In Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization (pp. 155–162). Springer International Publishing.‏Google Scholar
  43. Vosselman, G. (2009, September). Advanced point cloud processing. In Photogrammetric week (Vol. 9, pp. 137–146).‏Google Scholar
  44. Vosselman, G., & Zhou, L. (2009). Detection of curbstones in airborne laser scanning data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 111–116.Google Scholar
  45. Wang, G., Zhang, Y., Li, J., & Song, P. (2011, June). 3D road information extraction from LiDAR data fused with aerial-images. In 2011 IEEE international conference on spatial data mining and geographical knowledge services (ICSDM) (pp. 362–366). IEEE.‏Google Scholar
  46. Xue, B., Zhang, M., & Browne, W. N. (2013). Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Transactions on Cybernetics, 43(6), 1656–1671.CrossRefGoogle Scholar
  47. Yan, G., Mas, J. F., Maathuis, B. H. P., Xiangmin, Z., & Van Dijk, P. M. (2006). Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing, 27(18), 4039–4055.CrossRefGoogle Scholar
  48. Yuan, X., Zhao, C. X., Cai, Y. F., Zhang, H., & Chen, D. B. (2008, December). Road-surface abstraction using ladar sensing. In 10th International Conference on Control, Automation, Robotics and Vision, 2008. ICARCV 2008 (pp. 1097–1102). IEEE.‏Google Scholar
  49. Zhang, W. (2010, June). Lidar-based road and road-edge detection. In 2010 IEE Intelligent Vehicles Symposium (IV) (pp. 845–848). IEEE.‏Google Scholar
  50. Zheng, L., Zhang, J., & Wang, Q. (2009). Mean-shift-based color segmentation of images containing green vegetation. Computers and Electronics in Agriculture, 65(1), 93–98.CrossRefGoogle Scholar
  51. Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. IEEE Geoscience and Remote Sensing Letters, 10(4), 928–931.CrossRefGoogle Scholar
  52. Zhou, L., & Vosselman, G. (2012). Mapping curbstones in airborne and mobile laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 18, 293–304.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia
  2. 2.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia

Personalised recommendations