Skip to main content

Trends in Thermochemical Techniques of Boriding

  • Chapter
  • First Online:
Book cover Current Trends in Boriding

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

All the specified thermochemical techniques of boriding in solid, liquid and gaseous media were characterized and compared in this chapter based on the available literature data. The technological aspects of boriding processes were analyzed, taking into consideration the advantages and disadvantages of each method. The effects of the boriding techniques on the microstructure of borided materials have been indicated. The mechanism of formation of active boron atoms was described. Some issues of the thermodynamics of gas boriding were analyzed. The chemical techniques of boriding were divided into the three groups: boriding in solid media, boriding in liquid media and boriding in gaseous media (see Fig. 2.1). Due to the need of using the elevated temperature during these processes, they were usually recognized as thermochemical techniques. In the present work, the most intensively developed techniques, put in the boxes drawn in a broken line in Fig. 2.1, were described in more detail, taking into account the current trends in boriding. Therefore, the most attention in this chapter was devoted to the powder-pack processes, electrochemical boronizing in borax as well as to the gas boronizing with the use of boron halides or boranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aich S, Ravi Chandran KS (2002) TiB whisker coating on titanium surfaces by solid-state diffusion: synthesis, microstructure, and mechanical properties. Metall Mater Trans A 33A:3489–3498

    Article  CAS  Google Scholar 

  • Akca B, Çalık A (2017) Characterization of borided pure molybdenum under controlled atmosphere. Prot Met Phys Chem Surf 53(3):511–517

    Article  CAS  Google Scholar 

  • Allaoui O, Bouaouadja N, Saindernan G (2006) Characterization of boronized layers on a XC38 steel. Surf Coat Technol 201:3475–3482

    Article  CAS  Google Scholar 

  • Anthymidis KG, Stergioudis E, Tsipas DN (2001a) Boriding in a fluidized bed reactor. Mater Lett 51:156–160

    Article  CAS  Google Scholar 

  • Anthymidis KG, Tsipas DN, Stergioudis E (2001b) Boriding of titanium alloys in a fluidized bed reactor. J Mater Sci Lett 20:2067–2069

    Article  CAS  Google Scholar 

  • Anthymidis KG, Stergioudis G, Roussos D, Zinoviadis P, Tsipas DN (2002a) Boriding of ferrous and non-ferrous metals in fluidised bed reactor. Surf Eng 18(4):255–259

    Article  CAS  Google Scholar 

  • Anthymidis KG, Stergioudis E, Tsipas DN (2002b) Boride coatings on non-ferrous materials in a fluidized bed reactor and their properties. Sci Technol Adv Mater 3:303–311

    Article  CAS  Google Scholar 

  • Anthymidis KG, Zinoviadis P, Roussous D, Tsipas DN (2002c) Boriding of nickel in a fluidized bed reactor. Mater Res Bull 37:515–522

    Article  CAS  Google Scholar 

  • Anzawa Y, Koyama S, Shohji I (2017) The effect of boriding on wear resistance of cold work tool steel. J Phys Conf Ser 843:012064

    Google Scholar 

  • Atar E, Kayali ES, Cimenoglu H (2008) Characteristics and wear performance of borided Ti6Al4V alloy. Surf Coat Technol 202:4583–4590

    Article  CAS  Google Scholar 

  • Babul T, Kucharieva N (2014) Application of active powders at fluidised bed heat treatment technologies. Int J Microstruct Mater Prop 9(1):50–59

    CAS  Google Scholar 

  • Balandin YA (2004) Boronitriding of die steels in fluidized bed. Metalloved Term Obrab Met (Met Sci Heat Treat) 9:25–27

    Google Scholar 

  • Balandin YA (2005) Suface hardening of die steels by diffusion boronizing, borocopperizing, and borochromizing in fluidized bed. Metalloved Term Obrab Met (Met Sci Heat Treat) 3:27–30

    Google Scholar 

  • Bartkowska A, Pertek A (2014) Laser production of B-Ni complex layers. Surf Coat Technol 248:23–29

    Article  CAS  Google Scholar 

  • Bartkowska A, Pertek A, Popławski M, Bartkowski B, Przestacki D, Miklaszewski A (2015a) Effect of laser modification of B-Ni complex layer on wear resistance and microhardness. Opt Laser Technol 72:116–124

    Article  CAS  Google Scholar 

  • Bartkowska A, Pertek A, Kulka M, Klimek L (2015b) Laser surface modification of boronickelized medium carbon steel. Opt Laser Technol 74:145–157

    Article  CAS  Google Scholar 

  • Bartsch K, Wolf E (1979) Zur Thermodynamik der Systeme B–BCl–H und B–Br–H. Z Anorg Allg Chem 457:31–37

    Article  CAS  Google Scholar 

  • Baumgarten P, Bruns W (1939) Über die Umsetzung von Borfluorid mit Bortrioxyd, Boraten, Carbonaten und Nitraten und zur Kenntnis eines mutmaßlichen Boroxyfluorides (BOF)3. Ber Dtsch Chem Ges B 72:1753–1762

    Article  Google Scholar 

  • Bayazitov MI, Volkov VA, Aliev AA (1976) Boronizing from paste with furnace heating. Metalloved Term Obrab Met (Met Sci Heat Treat) 18(5):457–458

    Google Scholar 

  • Bindal C (1991) Determination of some material properties of borides coated on the surfaces of low alloy and carbon steels. Ph.D. thesis, Istanbul Technical University, Institute of Science and Technology, Istanbul, Turkey

    Google Scholar 

  • Bindal C, Üçisik AH (1999) Characterization of borides formed on impurity-controlled chromium-based low alloy steels. Surf Coat Technol 122:208–213

    Article  CAS  Google Scholar 

  • Blanter ME, Besedin NP (1955) Kinetics of formation of boride layers on iron alloys. Metalloved Term Obrab Met (Met Sci Heat Treat) 6:3–9

    Google Scholar 

  • Bonomi A, Giess H, Gentaz C (1973) Electrochemical boriding of molybdenum in molten salts. Electrodeposition Surf Treat 1(5):419–427

    Article  CAS  Google Scholar 

  • Bonomi A, Habersaat L, Bienvenu G (1978) Electrochemical boriding of nitriding steel in molten salts. Surf Technol 6(4):313–319

    Article  CAS  Google Scholar 

  • Bouaziz SA, Boudaoud N, Zanoun A (2009) Boruration thermochimique d’un acier C38 dans un bain de sels borax-SiC (Thermochimical boriding of a C38 steel in molten salts containing borax-SiC). Materiaux et Techniques 97(4):253–259

    Article  CAS  Google Scholar 

  • Brakman CM, Gommers AWJ, Mittemeijer EJ (1989) Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics. J Mater Res Soc 4:1354–1370

    Article  CAS  Google Scholar 

  • Çalik A (2013) Effect of powder particle size on the mechanical properties of boronized EN H320 LA steel sheets. ISIJ Int 53(1):160–164

    Article  CAS  Google Scholar 

  • Çalik A, Karakaş MS, Ucar N, Ünüvar F (2014) Boriding kinetics of pure cobalt. Kovove Mat 52(2):107–112

    Google Scholar 

  • Campos I, Oseguera J, Figueroa U, García JA, Bautista O, Kelemenis G (2003) Kinetic study of boron diffusion in the paste-boriding process. Mater Sci Eng A 352:261–265

    Article  CAS  Google Scholar 

  • Campos I, Bautista O, Ramírez G, Islas M, De La Parra J, Zúñiga L (2005) Effect of boron paste thickness on the growth kinetics of Fe2B boride layers during the boriding process. Appl Surf Sci 243:429–436

    Article  CAS  Google Scholar 

  • Campos I, Palomar M, Amador A, Ganem R, Martinez J (2006a) Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process. Surf Coat Technol 201:2438–2442

    Article  CAS  Google Scholar 

  • Campos I, Torres R, Bautista O, Ramírez G, Zúñiga L (2006b) Effect of boron paste thickness on the growth kinetics of polyphase boride coatings during the boriding process. Appl Surf Sci 252:2396–2403

    Article  CAS  Google Scholar 

  • Campos I, Rosas R, Figueroa U, Villa Velázquez C, Meneses A, Guevara A (2008a) Fracture toughness evaluation using Palmqvist crack models on AISI 1045 borided steels. Mater Sci Eng A 488:562–568

    Article  CAS  Google Scholar 

  • Campos I, Farah M, López N, Bermúdez G, Rodríguez G, Villa Velázquez C (2008b) Evaluation of the tool life and fracture toughness of cutting tools boronized by the paste boriding process. Appl Surf Sci 254:2967–2974

    Article  CAS  Google Scholar 

  • Campos-Silva I, Balankin AS, Sierra AH, López-Perrusquia N, Escobar-Galindo R, Morales-Matamoros D (2008) Characterization of rough interfaces obtained by boriding. Appl Surf Sci 255:2596–2602

    Article  CAS  Google Scholar 

  • Campos-Silva I, Ortiz-Domínguez M, Keddam M, López-Perrusquia N, Carmona-Vargas A, Elías-Espinosa M (2009) Kinetics of the formation of Fe2B layers in gray cast iron: effects of boron concentration and boride incubation time. Appl Surf Sci 255:9290–9295

    Article  CAS  Google Scholar 

  • Campos-Silva I, Ortiz-Domínguez M, Lopez-Perrusquia N, Meneses-Amador A, Escobar-Galindo R, Martínez-Trinidad J (2010) Characterization of AISI 4140 borided steels. Appl Surf Sci 256:2372–2379

    Article  CAS  Google Scholar 

  • Campos-Silva I, Martínez-Trinidad J, Doñu-Ruíz MA, Rodríguez-Castro G, Hernández-Sánchez E, Bravo-Bárcenas O (2011) Interfacial indentation test of FeB/Fe2B coatings. Surf Coat Technol 206:1809–1815

    Article  CAS  Google Scholar 

  • Campos-Silva I, Ortiz-Domínguez M, Tapia-Quintero C, Rodríguez-Castro G, Jiménez-Reyes MY, Chávez-Gutiérrez E (2012) Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel. J Mater Eng Perform 21(8):1714–1723

    Article  CAS  Google Scholar 

  • Campos-Silva I, Flores-Jiménez M, Rodríguez-Castro G, Hernández-Sánchez E, Martínez-Trinidad J, Tadeo-Rosas R (2013a) Improved fracture toughness of boride coating developed with a diffusion annealing process. Surf Coat Technol 237:429–439

    Article  CAS  Google Scholar 

  • Campos-Silva I, Hernández-Sánchez E, Rodríguez-Castro G, Cimenoglu H, Nava-Sánchez JL, Meneses-Amador A, Carrera-Espinoza R (2013b) A study of indentation for mechanical characterization of the Fe2B layer. Surf Coat Technol 232:173–181

    Article  CAS  Google Scholar 

  • Campos-Silva I, Bravo-Bárcenas D, Meneses-Amador A, Ortiz-Domínguez M, Cimenoglu H, Figueroa-López U, Andraca-Adame J (2013c) Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy. Surf Coat Technol 237:402–414

    Article  CAS  Google Scholar 

  • Campos-Silva I, Bravo-Bárcenas D, Cimenoglu H, Figueroa-López U, Flores-Jiménez M, Meydanoglu O (2014) The boriding process in CoCrMo alloy: fracture toughness in cobalt boride coatings. Surf Coat Technol 260:362–368

    Article  CAS  Google Scholar 

  • Casadesus P, Frantz C, Gantois M (1979) Boriding with a thermally unstable gas (diborane). Metall Trans A 10A:1739–1743

    Article  CAS  Google Scholar 

  • Chernov YB, Afinogenov AI, Ilyushchenko NG, Shurov NI, Zyryanov VG, Martem’yanova ZS, Chernova MP, Shamanova ND (1998) Boriding steels in molten calcium chloride. Rasplavy 2:70–75

    Google Scholar 

  • Chernov YB, Anfinogenov AI, Veselov IN (1999) Special features of the technology of boronizing steel in a calcium chloride melt. Metalloved Term Obrab Met (Met Sci Heat Treat) 41(12):511–515

    Article  CAS  Google Scholar 

  • Chochołowski M, Przybyłowicz K (1984) Boriding in powders by aluminothermic method of reduction of boric anhydride. In: Proceedings of conference OC’84, vol 1, pp 188–190

    Google Scholar 

  • David K, Anthymidis KG, Agrianidis P, Petropoulos G (2008) Characterization and tribological properties of boride coatings of steels in a fluidized bed reactor. Ind Lubr Tribol 60(1):31–36

    Article  Google Scholar 

  • Doñu Ruiz MA, López Perrusquia N, Sánchez Huerta D, Torres San Miguel CR, Urriolagoitia Calderón GM, Cerillo Moreno EA, Cortes Suarez JV (2015) Growth kinetics of boride coatings formed at the surface AISI M2 during dehydrated paste pack boriding. Thin Solid Films 596:147–154

    Article  CAS  Google Scholar 

  • Dybkov VI (2017) Boriding of chromium steels. Powder Metall Met Ceram 55(11–12):650–655

    Article  CAS  Google Scholar 

  • Efe GÇ, İpek M, Özbek İ, Bindal C (2008) Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels. Mater Charact 59:23–31

    Article  CAS  Google Scholar 

  • Eipeltauer E (1951) Borierung von Eisen aus der Gasphase (Gas boronizing of iron). Verlag Technik, Berlin

    Google Scholar 

  • Flichtl W (1981) Boronizing and its practical applications. Mater Eng 2:276–286

    Google Scholar 

  • Fuda M, Kawahara G, Sugimoto K (1991) Electrolytic boriding of Fe–Cr–Ni alloys in molten alkali salt with low melting point. Nippon Kinzoku Gakkaishi (J Jpn Inst Met) 55(4):412–418 (in Japanese)

    Article  CAS  Google Scholar 

  • Genel K, Ozbek I, Bindal C (2003) Kinetics of boriding of AISI W1 steel. Mater Sci Eng A 347:311–314

    Article  Google Scholar 

  • Gerasimov LW, Prosvirin WI (1972) Skorostnyje procesy khimikotermicheskoy obrabotki z primienieniem past i suspensii. RKIIGA No. 200, Ryga, pp 91–92

    Google Scholar 

  • Goeuriot P, Thevenot F, Driver JH (1981) Surface treatment of steels: Borudif, a new boriding process. Thin Solid Films 78:67–76

    Article  CAS  Google Scholar 

  • Goeuriot P, Fillit R, Thevenot F, Driver JH, Bruyas H (1982) The influence of alloying element additions on the boriding of steels. Mater Sci Eng 55:9–19

    Article  CAS  Google Scholar 

  • Günen A, Kurt B, Orhan N, Kanca E (2014) The investigation of corrosion behavior of borided AISI 304 austenitic stainless steel with nanoboron powder. Prot Met Phys Chem Surf 50(1):104–110

    Article  CAS  Google Scholar 

  • Günen A, Kanca E, Demir M, Er Y, Sağlam G, Gök MS (2017) Microabrasion wear behavior of fast-borided steel tooth drill bits. Tribol Trans 60(2):267–275

    Article  CAS  Google Scholar 

  • Gunes I, Kanat S (2015) Diffusion kinetics and characterization of borided AISI D6 steel. Prot Met Phys Chem Surf 51(5):842–846

    Article  CAS  Google Scholar 

  • Gutman MB, Mikhailov LA, Kaufman WG (1968) USSR Patent No. 223562, Biul. Izobret. i Tow. Znakov, 23, p 131

    Google Scholar 

  • Hegewaldt F, Singheiser L, Türk M (1984) Gasborieren. Haerterei Tech Mit 39(1):7–15

    CAS  Google Scholar 

  • Hernández-Sanchez E, Rodriguez-Castro G, Meneses-Amador A, Bravo-Bárcenas D, Arzate-Vazquez I, Martínez-Gutiérrez H, Romero-Romo M, Campos-Silva I (2013) Effect of the anisotropic growth on the fracture toughness measurements obtained in the Fe2B layer. Surf Coat Technol 237:292–298

    Article  CAS  Google Scholar 

  • Hill VL, Stapleton TF (1965) Boronizing bath and method. US Patent No. 3201285 A

    Google Scholar 

  • Huang YG, Chen JR, Zhang ML, Zhong XX, Wang HQ, Li QY (2013) Electrolytic boronizing of titanium in Na2B4O7-20% K2CO3. Mater Manuf Process 28:1310–1313

    Article  CAS  Google Scholar 

  • Hudáková M, Kusý M, Sedlická V, Grgač P (2007) Analysis of the boronized layer on K 190 PM tool steel. Mater Tehnologije 41(2):81–84

    Google Scholar 

  • Hunger HJ, Trute G (1994) Successful boronizing of nickel-based alloys. Mater Sci Forum 163–165:341–346

    Article  Google Scholar 

  • Hurd DT (1952) An introduction to the chemistry of hydrides. Wiley, Chapman & Hall, New York, London

    Google Scholar 

  • Ilyushchenko NG, Belyaeva GI (1968) Low-temperature aluminizing of steels in molten baths. Metalloved Term Obrab Met (Met Sci Heat Treat) 4:14–17

    Google Scholar 

  • Ivanov R, Ignatova-Ivanova T (2016) Diffusion coatings as corrosion inhibitors. Acta Sci Nat 3(1):39–43

    Google Scholar 

  • Jasiński J, Torbus R, Kasprzycka E, Bogdański B (2007) Influence of the preheat treatment on the microstructure and properties of X37CrMoV5-1 steel. Mater Manuf Process 22(1):5–8

    Article  CAS  Google Scholar 

  • Jasnogorodsky IZ (1949) Nagrev metallov i splavov w elektrolitie. Maszgiz, Moskva

    Google Scholar 

  • Jastrzębowski K, Młynarczak A, Jakubowski J (1988) Way of producing diffusion coatings on metals with powder mixtures. Author’s certificate about making the invention No. 226543. Warsaw, Poland

    Google Scholar 

  • Kahvecioglu O, Sista V, Eryilmaz OL, Erdemir A, Timur S (2011) Ultra-fast boriding of nickel aluminide. Thin Solid Films 520:1575–1581

    Article  CAS  Google Scholar 

  • Kahvecioglu Feridun O, Sista V, Eryilmaz OL, Erdemir A (2015) Electrochemical boriding of molybdenum in molten borax. Surf Eng 31(8):575–580

    Article  CAS  Google Scholar 

  • Kaouka A, Allaoui O, Keddam M (2013) Growth kinetics of the boride layers formed on SAE 1035 steel. Mater et Tech 101(7), Article number 705

    Article  CAS  Google Scholar 

  • Kaouka A, Allaoui O, Keddam M (2014) Properties of boride layer on boride SAE 1035 steel by molten salt. Appl Mech Mater 467:116–121

    Article  CAS  Google Scholar 

  • Kartal G, Timur S (2013) Growth kinetics of titanium borides produced by CRTD-Bor method. Surf Coat Technol 215:440–446

    Article  CAS  Google Scholar 

  • Kartal G, Timur S, Arslan C (2005) Effects of process current density and temperature on electrochemical boriding of steel in molten salts. J Electron Mater 34(12):1538–1542

    Article  CAS  Google Scholar 

  • Kartal G, Kahvecioglu O, Timur S (2006) Investigating the morphology and corrosion behavior of electrochemically borided steel. Surf Coat Technol 200:3590–3593

    Article  CAS  Google Scholar 

  • Kartal G, Timur S, Urgen M, Erdemir A (2010a) Electrochemical boriding of titanium for improved mechanical properties. Surf Coat Technol 204:3935–3939

    Article  CAS  Google Scholar 

  • Kartal G, Timur S, Eryilmaz OL, Erdemir A (2010b) Influence of process duration on structure and chemistry of borided low carbon steel. Surf Coat Technol 205:1578–1583

    Article  CAS  Google Scholar 

  • Kartal G, Timur S, Sista V, Eryilmaz OL, Erdemir A (2011) The growth of single Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding (PHEB). Surf Coat Technol 206:2005–2011

    Article  CAS  Google Scholar 

  • Kartal Sireli G, Ozkalafat P, Timur S (2017) Surface modification of chromium-silicon martensitic steel by forming hard borides. Surf Coat Technol 326:18–27

    Article  CAS  Google Scholar 

  • Katagiri T (1969) Study of the gas boronizing reaction of iron with BCl3 and H2. J Jpn Inst Met 33(6):746–749

    Article  CAS  Google Scholar 

  • Keddam M, Kulka M, Makuch N, Pertek A, Małdziński L (2014) A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of armco iron: effect of boride incubation times. Appl Surf Sci 298:155–163

    Article  CAS  Google Scholar 

  • Khairulmaini M, Alias SK, Abdullah B, Said JM, Sulong N, Mazni M, Jenal M (2015) Single and double shot blasting treatment of 304 stainless steel. J Teknologi (Sci Eng) 76(9):49–52

    Google Scholar 

  • Kilic A, Kartal G, Urgen M, Timur S (2013) Effects of electrochemical boriding process parameters on the formation of titanium borides. Surf Eng Appl Electrochem 49(2):168–175

    Article  Google Scholar 

  • Köksal S (2009) The characterization of Wc–Co based materials boronized within molten salt bath. Solid State Phenom 144:261–266

    Article  Google Scholar 

  • Kostyk K (2015) Development of the high-speed boriding technology of alloy steel. East Eur J Enterp Technol 6(11):8–15 (in Ukrainian)

    Google Scholar 

  • Koyama K, Shimotake H, Mrazek FC (1983) Boriding of nickel and other metals at temperatures below 670°C. J Electrochem Soc 130(1):147–151

    Article  CAS  Google Scholar 

  • Koyama S, Takada M, Kawasumi K, Fukuda T, Shohji I (2011a) Effect of B contents in fused salt bath on boriding of SUS304 stainless steel. Nippon Kinzoku Gakkaishi (J Jpn Inst Met) 75(12):678–683

    CAS  Google Scholar 

  • Koyama S, Fukuda T, Kawasumi K, Shohji I (2011b) Influence of processing temperature on boriding of SUS304 stainless steel by B added fused salt bath. Nippon Kinzoku Gakkaishi (J Jpn Inst Met) 75(12):684–689

    CAS  Google Scholar 

  • Koyama S, Kawasumi K, Fukuda T, Shohji I (2011c) Influence of processing temperature on boriding of SUS304 stainless steel by Al added fused salt bath. Nihon Kikai Gakkai Ronbunshu, A Hen (Trans Jpn Soc Mech Eng Part A) 77(783):1986–1993

    CAS  Google Scholar 

  • Krzyminski H, Degussa W, Kunst H (1973) Boriding of refractory metals. Haerterei Tech Mit 28(2):100–112

    CAS  Google Scholar 

  • Kubaschewski O, Evans EL, Alcock CB (1967) Metallurgical thermochemistry, 4th edn. Pergamon Press, Oxford, London, New York

    Google Scholar 

  • Kul M, Oskay KO, Temizkan A, Karaca B, Kumruoğlu LC, Topçu B (2016) Effect of boronizing composition on boride layer of boronized GGG-60 ductile cast iron. Vacuum 126:80–83

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2003a) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2003b) The importance of carbon content beneath iron borides after boriding of chromium and nickel-based low-carbon steel. Appl Surf Sci 214:161–171

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2003c) Characterization of complex (B–C–N) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 218:113–122

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2004) Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification. Appl Surf Sci 236:98–105

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2007) Laser surface modification of carburized and borocarburized 15CrNi6 steel. Mater Charact 58(5):461–470

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2008) Gradient formation of boride layers by borocarburizing. Appl Surf Sci 254:5281–5290

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A, Klimek L (2006) The influence of carbon content in the borided Fe-alloys on the microstructure of iron borides. Mater Charact 56:232–240

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A, Makuch N (2011) The importance of carbon concentration-depth profile beneath iron borides for low-cycle fatigue strength. Mater Sci Eng A 528:8641–8650

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Piasecki A (2012a) An alternative method of gas boriding applied to the formation of borocarburized layer. Mater Charact 72:59–67

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Piasecki A (2012b) Microstructure and properties of borocarburized and laser-modified 17CrNi6-6 steel. Opt Laser Technol 44:872–881

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Małdziński L (2013) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2–BCl3 atmosphere. J Solid State Chem 199:196–203

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Popławski M (2014) Two-stage gas boriding of Nisil in N2–H2–BCl3 atmosphere. Surf Coat Technol 244:78–86

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Piasecki A (2017) Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surf Coat Technol 325:515–532

    Article  CAS  Google Scholar 

  • Kunst H, Schaaber O (1967) Beobachtungen beim Oberflaechenborieren von Stahl III. Haerterei Tech Mit 22(4):275–292

    Google Scholar 

  • Küper A, Qiao X, Stock HR, Mayr P (2000) A novel approach to gas boronizing. Surf Coat Technol 130:87–94

    Article  Google Scholar 

  • Kuznetsov SA, Kuznetsova SV, Rebrov EV, Mies MJM, de Croon MHJM, Schouten JC (2005) Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air–water mixture. Surf Coat Technol 195:182–188

    Article  CAS  Google Scholar 

  • Kuznetsov SA, Rebrov EV, Mies MJM, de Croon MHJM, Schouten JC (2006) Synthesis of protective Mo–Si–B coatings in molten salts and their oxidation behavior in an air–water mixture. Surf Coat Technol 201:971–978

    Article  CAS  Google Scholar 

  • Lakhtin YuM, Pchelkina MA (1961) Boronizing of high-alloy steels. Metalloved Term Obrab Met (Met Sci Heat Treat) 3(3–4):111–114

    Google Scholar 

  • Laubengayer AW, Hurd DT, Newkirk AE, Hoard JL (1943) Boron. I. Preparation and properties of pure crystalline boron. J Am Chem Soc 65:1924–1931

    Article  CAS  Google Scholar 

  • Li C, ShenB Li G, Yang C (2008) Effect of boronizing temperature and time on microstructure and abrasion wear resistance of Cr12Mn2V2 high chromium cast iron. Surf Coat Technol 202:5882–5886

    Article  CAS  Google Scholar 

  • Lou DC, Onsøien MI, Akselsen OM (2007) Patent application no. N2007 0885

    Google Scholar 

  • Lou DC, Solberg JK, Akselsen OM, Dahl N (2009) Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater Chem Phys 115:239–244

    Article  CAS  Google Scholar 

  • Lyakhovich LS, Kosachevskii LN, Dolmanov FV, Krukovich MG (1972) Liquid processes of chemical heat treatment without electrolysis. Metalloved Term Obrab Met (Met Sci Heat Treat) 2:61–62

    Google Scholar 

  • Lyakhovich LS, Kosachevskii LN et al (1973) USSR Patent No. 32768, Biul. Izobret. i Tow. Znakov, 33, p 85

    Google Scholar 

  • Lyakhovich LS et al (1974) Multicomponent diffusion coating. Naukova dumka, Minsk, pp 99–118

    Google Scholar 

  • Lyakhovich LS, Dolmanov FV, Isakov SA (1982) Boriding of steels in gaseous media. Metalloved Term Obrab Met (Met Sci Heat Treat) 4:25–28

    Google Scholar 

  • Makuch N, Kulka M (2014) Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy. Appl Surf Sci 314:1007–1018

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M (2016) Fracture toughness of hard ceramic phases produced on Nimonic 80A-alloy by gas boriding. Ceram Int 42:3275–3289

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Piasecki A (2015) The effects of chemical composition of Nimonic 80A-alloy on the microstructure and properties of gas-borided layer. Surf Coat Technol 276:440–455

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Paczkowska M (2017a) Nanomechanical properties of gas-borided layer produced on Nimonic 80A-alloy. Ceram Int 43:8255–8261

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Mikołajczak D (2017b) Corrosion behavior of hard boride layer produced on Nimonic 80A-Alloy by gas boriding. Trans Indian Inst Met. https://doi.org/10.1007/s12666-017-1113-y

    Article  CAS  Google Scholar 

  • Makyta M, Matiašovský K, Fellner P (1984) Mechanism of the cathode process in the electrolytic boriding in molten salts. Electrochim Acta 29(12):1653–1657

    Article  CAS  Google Scholar 

  • Mariani FE, Takeya GS, Casteletti LC (2015a) Boroaustempering treatment on alloyed ductile irons. In: Proceedings of the 28th ASM heat treating society conference, Oct 20–22, Detroit, Michigan, USA, pp 686–691

    Google Scholar 

  • Mariani FE, Rego GC, Casteletti LC (2015b) Study of boriding kinetics for alloyed ductile irons. In: Proceedings of the 28th ASM heat treating society conference, Oct 20–22, Detroit, Michigan, USA, pp 696–701

    Google Scholar 

  • Martin GR (1949), U.S. Patent No. 2484519

    Google Scholar 

  • Matiašovský K, Chrenková-Paučírová M, Fellner P, Makyta M (1988) Electrochemical and thermochemical boriding in molten salts. Surf Coat Technol 35:133–149

    Article  Google Scholar 

  • McBride CC, Spretnak IW, Speiser R (1954) A study of the Fe-Fe2B system. Trans Am Soc Met 46:499–524

    Google Scholar 

  • Meléndez E, Campos I, Rocha E, Barron MA (1997) Structural and strength characterization of steels subjected to boriding thermochemical process. Mater Sci Eng A 234–236:900–903

    Article  Google Scholar 

  • Meneses-Amador A, Campos-Silva I, Martínez-Trinidad J, Panier S, Figueroa-López U, Torres-Hernández A (2013) An expression to determine the Vickers indentation fracture toughness obtained by the finite element method on Fe2B layers. Surf Coat Technol 215:285–290

    Article  CAS  Google Scholar 

  • Mindivan H (2016) Investigation of thermochemical boriding effect on wear behavior of a GGG 50 quality as-cast ductile iron. Ind Lubr Tribol 68(4):476–481

    Article  Google Scholar 

  • Minkevich AN (1950) Khimiko-termicheskaya obrabotka stali. Maszgiz, Moskva

    Google Scholar 

  • Minkevich AN (1965) Khimiko-termicheskaya obrabotka metallov i splavov. Mashinostroenie, Moskva

    Google Scholar 

  • Minkevich AN, Ulybin GN (1959) Chromizing and boronizing of steel with induction heating. Metalloved Term Obrab Met (Met Sci Heat Treat) 1(4):48–51

    Google Scholar 

  • Młynarczak A (2005) Modyfikowanie budowy i właściwości jedno- i wieloskładnikowych warstw węglików chromu, wanadu i tytanu wytwarzanych na stalach metodą proszkową (Modification of structure and properties of single- and multicomponent diffusion layers of chromium, vanadium and titanium carbides produced on steels by powder-pack method). Dissertation No. 396, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-336-0 (in Polish)

    Google Scholar 

  • Młynarczak A, Jóźwiak K, Mesmacque G (2003) Wear resistance of multiphase diffusion carbide coatings. Adv Eng Mater 5(11):789–793

    Article  CAS  Google Scholar 

  • Moss N (1947) National Research Council of Canada, Atomic Energy Project (NRC No. 1950), Chalk River, Ontario

    Google Scholar 

  • Nawrocki M, Piasecki A (2002) Abrasive wear resistance carbide and boride diffusion layers formed on tool steels. Inż Materiałowa-Mater Eng 5(130):323–327 (in Polish)

    Google Scholar 

  • Ortiz-Domínguez M, Campos-Silva I, Ares de Parga G, Martínez-Trinidad J, Jiménez-Reyes MY, Rodríguez-Castro G, Hernández-Sánchez E (2012) The effective boron diffusion coefficient in Fe2B layers with the presence of chemical stresses. Kovove Mater 50:115–123

    Google Scholar 

  • Ozbek I, Bindal C (2002) Mechanical properties of boronized AISI W4 steel. Surf Coat Technol 154:14–20

    Article  CAS  Google Scholar 

  • Ozbek I, Bindal C (2011) Kinetics of borided AISI M2 high speed steel. Vacuum 86:391–397

    Article  CAS  Google Scholar 

  • Ozbek I, Akbulut H, Zeytin S, Bindal C, Üçisik AH (2000) The characterization of borided 99.5% purity nickel. Surf Coat Technol 126:166–170

    Article  CAS  Google Scholar 

  • Pchelkina MA, Lakhtin YM (1960) Boronizing in a boron trichloride atmosphere. Metalloved Term Obrab Met (Met Sci Heat Treat) 7:40–42

    Google Scholar 

  • Pertek A (1994) Gas boriding condition for the iron borides layers formation. Mater Sci Forum 163–165:323–328

    Article  Google Scholar 

  • Pertek A (2001) Kształtowanie struktury i właściwości warstw borków żelaza otrzymywanych w procesie borowania gazowego (The structure formation and the properties of boronized layers obtained in gaseous boriding process) Dissertation No. 365, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-262-2 (in Polish)

    Google Scholar 

  • Pertek A, Kulka M (2002a) Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 202:252–260

    Article  CAS  Google Scholar 

  • Pertek A, Kulka M (2002b) Microstructure and properties of composite (B + C) diffusion layers on low-carbon steel. J Mater Sci 37:1–5

    Google Scholar 

  • Pertek A, Kulka M (2003a) Characterization of single tracks after laser surface modification of borided 41Cr4 steel. Appl Surf Sci 205:137–142

    Article  CAS  Google Scholar 

  • Pertek A, Kulka M (2003b) Two-step treatment carburizing followed by boriding on medium-carbon steel. Surf Coat Technol 173:309–314

    Article  CAS  Google Scholar 

  • Petrova RS, Suwattananont N, Samardzic V (2008) The effect of boronizing on metallic alloys for automotive applications. J Mater Eng Perform 17(3):340–345

    Article  CAS  Google Scholar 

  • Piasecki A, Młynarczak A (2003) The influence of composition of borochromizing mixture on structure and properties of diffusion layers formed on tool steels. Inż Materiałowa-Mater Eng 6(137):543–546

    Google Scholar 

  • Prosvirin WI, Locmanov GS (1965) USSR Patent No. 171876, Biul. Izobret. i Tow. Znakov, 12, p 21

    Google Scholar 

  • Przybyłowicz K (2000) Teoria i praktyka borowania stali (Theory and practice of steel boronizing). Publishing House of Kielce University of Technology, Kielce in Polish PL ISSN 0239-4979

    Google Scholar 

  • Rayane K, Allaoui O (2015) Application of artificial neural network for prediction of boride layer depth obtained on XC38 steel in molten salts. Defect Diffus Forum 365:194–199

    Article  Google Scholar 

  • Reynoldson RW (1993) Heat treatment in fluidized bed furnaces. The Materials Information Society, ASM International, Materials Park, OH

    Google Scholar 

  • Ribeiro R, Ingole S, Usta M, Bindal C, Üçisik AH, Liang H (2006) Tribological characteristics of boronized niobium for biojoint applications. Vacuum 80:1341–1345

    Article  CAS  Google Scholar 

  • Ribeiro R, Ingole S, Usta M, Bindal C, Üçisik AH, Liang H (2007) Tribological investigation of tantalum boride coating under dry and simulated body fluid conditions. Wear 262:1380–1386

    Article  CAS  Google Scholar 

  • Rodríguez-Castro G, Campos-Silva I, Chávez-Gutiérrez E, Martínez-Trinidad J, Hernández-Sánchez E, Torres-Hernández A (2013) Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel. Surf Coat Technol 215:291–299

    Article  CAS  Google Scholar 

  • Rodríguez-Castro GA, Reséndiz-Calderon CD, Jiménez-Tinoco LF, Meneses-Amador A, Gallardo-Hernández EA, Campos-Silva IE (2015) Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy. Surf Coat Technol 284:258–263

    Article  CAS  Google Scholar 

  • Sagon-King RF (1991) Fluidized-bed equipment. In: ASM handbook, vol 04—heat treating. ASM International Handbook Committee, ASM International, Cleveland, OH

    Google Scholar 

  • Sarma B, Tikekar NM, RaviChandran KS (2012) Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium. Ceram Int 38:6795–6805

    Article  CAS  Google Scholar 

  • Segers L, Fontana A, Winand R (1991) Electrochemical boriding of iron in molten salts. Electrochim Acta 36(1):41–47

    Article  CAS  Google Scholar 

  • Sen S (2005) The characterization of vanadium boride coatings on AISI 8620 steel. Surf Coat Technol 190:1–6

    Article  CAS  Google Scholar 

  • Sen U, Sen S, Yilmaz F (2004) Structural characterization of boride layer on boronized ductile irons. Surf Coat Technol 176:222–228

    Article  CAS  Google Scholar 

  • Sezgi NA, Doğu T, Özbelge HÖ (1997) BHCl2 formation during chemical vapor deposition of boron in a dual-impinging jet reactor. Ind Eng Chem Res 36:5537–5540

    Article  CAS  Google Scholar 

  • Simonenko AN, Shestakov VA, Poboinya VN (1982) Liquid boriding in induction salt baths. Metalloved Term Obrab Met (Met Sci Heat Treat) 24(5):360–361

    Article  Google Scholar 

  • Simonenko AN, Poroshin VV, Antia PK (1985) Aging of salt baths with electrolysis-free liquid boriding. Metalloved Term Obrab Met (Met Sci Heat Treat) 27(1):13–16

    Article  Google Scholar 

  • Sista V, Kahvecioglu O, Eryilmaz OL, Erdemir A, Timur S (2011) Electrochemical boriding and characterization of AISI D2 tool steel. Thin Solid Films 520:1582–1588

    Article  CAS  Google Scholar 

  • Sista V, Kahvecioglu O, Kartal G, Zeng QZ, Kim JH, Eryilmaz OL, Erdemir A (2013) Evaluation of electrochemical boriding of Inconel 600. Surf Coat Technol 215:452–459

    Article  CAS  Google Scholar 

  • Skugorova LP, Nechaev AI (1973) Investigation of the gas boriding process. Metalloved Term Obrab Met (Met Sci Heat Treat) 11:61–62

    Google Scholar 

  • Skugorova LP, Shlykov VI, Nechaev AI (1972) Apparatus and technology of gas boriding. Metalloved Term Obrab Met (Met Sci Heat Treat) 5:61–62

    Google Scholar 

  • Takeuchi E, Fujii K, Katagiri T (1979) Sliding wear characteristics of gas boronized steel. Wear 55:121–130

    Article  CAS  Google Scholar 

  • Tarakci M, Gencer Y, Çalik A (2010) The pack-boronizing of pure vanadium under a controlled atmosphere. Appl Surf Sci 256:7612–7618

    Article  CAS  Google Scholar 

  • Tikekar NM, Ravi Chandran KS, Sanders A (2007) Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium. Scripta Mater 57:273–276

    Article  CAS  Google Scholar 

  • Topuz P, Çiçek B, Akar O (2016) Kinetic investigation of AISI 304 steel boronized in indirect heated fluidized bed furnace. J Min Metall Sect B 52(1):63–68

    Article  CAS  Google Scholar 

  • Torun O, Çelikyürek I (2009) Boriding of diffusion bonded joints of pure nickel to commercially pure titanium. Mater Des 30:1830–1834

    Article  CAS  Google Scholar 

  • Tsipas DN, Anthymidis KG, Flitris Y (2003) Deposition of hard and/or corrosion resistant, single and multielement coatings on ferrous and nonferrous alloys in a fluidized bed reactor. J Mater Process Technol 134:145–152

    Article  CAS  Google Scholar 

  • Üçisik AH, Bindal C (1997) Fracture toughness of boride formed on low-alloys steels. Surf Coat Technol 94–95:561–565

    Article  Google Scholar 

  • Ueda N, Mizukoshi T, Demizu K, Sone T, Ikenaga A, Kawamoto M (2000) Boriding of nickel by the powder-pack method. Surf Coat Technol 126:25–30

    Article  CAS  Google Scholar 

  • Usta M (2005) The characterization of borided pure niobium. Surf Coat Technol 194:251–255

    Article  CAS  Google Scholar 

  • Usta M, Ozbek I, Ipek M, Bindal C, Üçisik AH (2005) The characterization of borided pure tungsten. Surf Coat Technol 194:330–334

    Article  CAS  Google Scholar 

  • Uzunov N, Ivanov R (2004) Aluminothermic powder boriding of steel. Appl Surf Sci 225:72–77

    Article  CAS  Google Scholar 

  • Voroshnin LG, Lyakhovich LS (1978) Borirovanie stali. Metallurgiâ, Moskva

    Google Scholar 

  • Wahl G (1975) Durferrit-technical information. Reprint from VDI, Z117, pp 785–789

    Google Scholar 

  • Weintraub E (1911) On the properties and preparation of the element boron. Ind Eng Chem 3(5):299–301

    Article  CAS  Google Scholar 

  • Winter KM, Kalucki J, Koshel D (2014) Process technologies for thermochemical surface engineering. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing series in metals and surface engineering: number 62, pp 141–206

    Chapter  Google Scholar 

  • Yokota H, Suzuki T (2005) Improvement in the oxidation of TiAl by molten salt boronizing. Tetsu-to-Hagane (J Iron Steel Inst Jpn) 91(1):217–223

    Article  CAS  Google Scholar 

  • Yokota H, Kudoh T, Suzuki T (2003) Oxidation resistance of boronized MoSi2. Surf Coat Technol 169–170:171–173

    Article  CAS  Google Scholar 

  • Yukin GI (1971) The mechanism of electroplating with boron. Metalloved Term Obrab Met (Met Sci Heat Treat) 8:42–45

    Google Scholar 

  • Zemskov GM, Kaidash NG, Praven’kaya LL (1964) Boriding iron and steel in vacuum. Metalloved Term Obrab Met (Met Sci Heat Treat) 3:61–63

    Google Scholar 

  • Zhigach AF, Antonov IS, Pchelkina MA, Yukin GI, Dobrodeev AS, Matveev VN (1959) Surface impregnation of steel with boron from the gas phase. Metalloved Term Obrab Met (Met Sci Heat Treat) 4:45–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kulka .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulka, M. (2019). Trends in Thermochemical Techniques of Boriding. In: Current Trends in Boriding. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-06782-3_4

Download citation

Publish with us

Policies and ethics