Skip to main content

Introduction

  • Chapter
  • First Online:
Current Trends in Boriding

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In this chapter, the origins of boriding process were mentioned, and the term ‘boriding’ was explained. The various important techniques of producing the boride layers and coatings were indicated together with some of their advantages. The next parts of this book were announced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brakman CM, Gommers AWJ, Mittemeijer EJ (1989) Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys boride-layer growth kinetics. J Mater Res Soc 4:1354–1370

    Article  CAS  Google Scholar 

  • Campos-Silva I, Flores-Jiménez M, Rodríguez-Castro G, Hernández-Sánchez E, Martínez-Trinidad J, Tadeo-Rosas R (2013) Improved fracture toughness of boride coating developed with a diffusion annealing process. Surf Coat Technol 237:429–439

    Article  CAS  Google Scholar 

  • Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4 V titanium alloy by laser alloying. Surf Eng 22(1):53–57

    Article  CAS  Google Scholar 

  • Formanek B, Swadźba L, Podolski P, Supernak W and Przybyłowicz J (1994) Diffusion boriding of elements of mining bits. In: Conference proceedings: scientific-technical conference thermotreatment’94, Gliwice–Ustroń Zawodzie, pp. 227–234

    Google Scholar 

  • Graf von Matuschka A (1977) Borieren. Carl Hanser Verlag, Munich/Vienna

    Google Scholar 

  • Horlock AJ, McCartney DG, Shipway PH, Wood JV (2002) Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behaviour. Mater Sci Eng., A 336:88–98

    Article  Google Scholar 

  • Jin HW, Park CG, Kim MC (1999) Microstructure and amorphization induced by frictional work in Fe–Cr–B alloy thermal spray coatings. Surf Coat Technol 113:103–112

    Article  CAS  Google Scholar 

  • Kartal G, Kahvecioglu O, Timur S (2006) Investigating the morphology and corrosion behavior of electrochemically borided steel. Surf Coat Technol 200:3590–3593

    Article  CAS  Google Scholar 

  • Keddam M, Kulka M, Makuch N, Pertek A, Małdziński L (2014) A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of Armco iron: effect of boride incubation times. Appl Surf Sci 298:155–163

    Article  CAS  Google Scholar 

  • Keddam M, Chegroune R, Kulka M, Makuch N, Panfil D, Siwak P, Taktak S (2018) Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel. Trans Indian Inst Met 71(1):79–90

    Article  CAS  Google Scholar 

  • Kim H-J, Yoon B-H, Lee C-H (2001) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852

    Article  CAS  Google Scholar 

  • Kulka M (2009) The gradient boride layers formed by borocarburizing and laser surface modification. Dissertation no. 428, Publishing House of Poznan University of Technology, Poznan, ISBN 978-83-7143-821-9

    Google Scholar 

  • Kulka M, Pertek A (2003) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2004) Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification. Appl Surf Sci 236:98–105

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2007) Laser surface modification of carburized and borocarburized 15CrNi6 steel. Mater Charact 58(5):461–470

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2008) Gradient formation of boride layers by borocarburizing. Appl Surf Sci 254:5281–5290

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A, Makuch N (2011) The importance of carbon concentration–depth profile beneath iron borides for low-cycle fatigue strength. Mater Sci Eng, A 528:8641–8650

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Piasecki A (2012) An alternative method of gas boriding applied to the formation of borocarburized layer. Mater Charact 72:59–67

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Małdziński L (2013) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2-BCl3 atmosphere. J Solid State Chem 199:196–203

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Dziarski P, Mikołajczak D, Przestacki D (2015) Gradient boride layers formed by diffusion carburizing and laser boriding. Opt Lasers Eng 67:163–175

    Article  Google Scholar 

  • Kulka M, Mikolajczak D, Makuch N, Dziarski P, Miklaszewski A (2016) Wear resistance improvement of austenitic 316L steel by laser alloying with boron. Surf Coat Technol 291:292–313

    Article  CAS  Google Scholar 

  • Kunst H and Schaaber O (1967) Beobachtungen beim Oberflaechenborieren von Stahl II. Haerterei-Tech Mitt 22(1), 1–25

    Google Scholar 

  • Kusmanov SA, Tambovskiy IV, Naumov AR, D’yakov IG, Kusmanova IA and Belkin PN (2017) Anodic electrolytic-plasma borocarburizing of low-carbon steel. Prot Met Phys Chem Surf. 53(3), 488-494

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37

    Article  CAS  Google Scholar 

  • Moissan H (1895) CR hebdom Seances Acad. Sci 120, 74

    Google Scholar 

  • Pertek A (2001) Kształtowanie struktury i właściwości warstw borków żelaza otrzymywanych w procesie borowania gazowego (The structure formation and the properties of boronized layers obtained in gaseous boriding process). In Polish, dissertation no. 365, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-262-2

    Google Scholar 

  • Pertek A, Kulka M (2002) Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 202:252–260

    Article  CAS  Google Scholar 

  • Przybyłowicz K (2000) Teoria i praktyka borowania stali (Theory and practice of steel boronizing). Publishing House of Kielce University of Technology, Kielce, In Polish

    Google Scholar 

  • Sinha AK (1991) Boriding (Boronizing). ASM Handbook 4:437–447

    Google Scholar 

  • Tian YS, Zhang QY, Wang DY, Chen CZ (2008) Analysis of the growth morphology of TiB and the microstructure refinement of the coatings fabricated on Ti–6Al–4 V by laser boronizing. Cryst Growth Des 8(2):700–703

    Article  CAS  Google Scholar 

  • Voroshnin LG, Lyakhovich LS (1978) Borirovanie stali. Metallurgiâ, Moskva

    Google Scholar 

  • Wang B, Xue W, Wu J, Jin X, Hua M, Wu Z (2013) Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing. J Alloy Compd 578:162–169

    Article  CAS  Google Scholar 

  • Wierzchoń T (1988) The role of glow discharge in the formation of a boride layer on steel in the plasma boriding process. advances in low-temperature plasma chemistry, technology, applications, vol 2. Technomic Publishing Co.INC, Lancaster-Basel, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kulka .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulka, M. (2019). Introduction. In: Current Trends in Boriding. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-06782-3_1

Download citation

Publish with us

Policies and ethics