Skip to main content

Part of the book series: Frontiers in Mathematics ((FM))

  • 574 Accesses

Abstract

Following Gilboa–Osher [50] (see also [14]), we introduce the following nonlocal operators. For a function \(u : \mathbb {R}^N \rightarrow \mathbb {R}\), we define its nonlocal gradient as the function \(\nabla _J u : \mathbb {R}^N \times \mathbb {R}^N \rightarrow \mathbb {R}\) defined by:

$$\displaystyle (\nabla _Ju) (x,y) = J(x-y) (u(y) - u(x)), \qquad x, y \in \mathbb {R}^N. $$

And for a function \(\mathbf {z} : \mathbb {R}^N \times \mathbb {R}^N \rightarrow \mathbb {R}\), its nonlocal divergence \({\mathrm {div}}_J \mathbf {z} : \mathbb {R}^N \rightarrow \mathbb {R}\) is defined as:

$$\displaystyle ({\mathrm {div}}_J \mathbf {z})(x) = \frac {1}{2} \int _{\mathbb {R}^N} (\mathbf {z}(x,y) - \mathbf {z}(y,x)) J(x-y) dy. $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Andreu, V. Caselles, J.M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223 (Birkhauser, Basel, 2004)

    Google Scholar 

  2. F. Andreu, J.M. Mazón, J.D. Rossi, J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 40, 1815–1851 (2008/2009)

    Article  MathSciNet  Google Scholar 

  3. F. Andreu, J.M. Mazón, J.D. Rossi, J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. 90, 201–227 (2008)

    Article  MathSciNet  Google Scholar 

  4. F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J. Toledo, Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, 2010)

    Google Scholar 

  5. J.-F. Aujol, G. Gilboa, N. Papadakis, Fundamentals of non-local total variation spectral theory, in Proceedings of the Scale and Variational Methods in Computer Vision, pp. 66–77 (2015)

    Google Scholar 

  6. P. Bénilan, M.G. Crandall, Completely accretive operators, in Semigroups Theory and Evolution Equations (Delft, 1989), ed. by P. Clement et al. Lecture Notes in Pure and Applied Mathematics, vol. 135 (Marcel Dekker, New York, 1991), pp. 41–75

    Google Scholar 

  7. H. Brezis, Operateurs Maximaux Monotones (North Holland, Amsterdam, 1973)

    MATH  Google Scholar 

  8. G. Gilboa, S. Osher, Nonlocal operators with applications to image processing. SIAM Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazón, J.M., Rossi, J.D., Toledo, J.J. (2019). Nonlocal Operators. In: Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets. Frontiers in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-06243-9_4

Download citation

Publish with us

Policies and ethics