On the Evolution of Methods for Conceptual Information Systems Modeling

  • Elmar J. SinzEmail author


Business information systems engineering has more than half a century of tradition in research and practice. Throughout these years, the object of investigation has remained the same: information systems. But this object has changed a lot over time. With the enhancements of platforms and technologies for the design and implementation of large software systems, the manageable size of information systems and their automation and integration was increasing. Automation refers to the share of tasks performed by machines. Integration is the enabling of holistic tasks through appropriate coupling of application systems.

The basic tools for managing these challenges are models and modeling methods. They bridge the gap between platforms and technology on the one hand and the real world on the other. As platforms and technologies mature, modeling methods continue to evolve.

In order to understand this evolutionary process, a framework supported by organizational theory is used. It is based on the concept of task, which is described from an internal and external perspective. The evolution takes the path from the inside to outside. While the internal perspective is oriented towards the platforms and technology, the external perspective is closer to the real world. Evolution begins with functional decomposition and ends preliminary with event-driven modeling.


  1. Balzert, H. (1982). Die Entwicklung von Software-Systemen. Prinzipien, Methoden, Sprachen, Werkzeuge. Mannheim: B.I.-Wissenschaftsverlag.Google Scholar
  2. Becker, J., & Vossen, G. (1996). Geschäftsprozeßmodellierung und Workflow-management: Eine Einführung. Geschäftsprozeßmodellierung und Workflow-management—Modelle, Methoden, Werkzeuge (pp. 17–26). Bonn: International Thomson Publishing.Google Scholar
  3. Chen, P. P.-S. (1976). The Entity-Relationship model: Toward a unified view of data. ACM Transactions on Database Systems, 1(1), 9–36.CrossRefGoogle Scholar
  4. Coad, P., & Yourdon, E. (1991). Object-oriented analysis (2nd ed.). Englewood Cliffs, NJ: Yourdon Press.Google Scholar
  5. Codd, E. F. (1970). A relational model for large shared data banks. Communications of the ACM, 13(6), 377–387.CrossRefGoogle Scholar
  6. DeMarco, T. (1979). Structured analysis and system specification. Englewood Cliffs, NY: Yourdon Press.Google Scholar
  7. Erl, T. (2007). SOA: Principles of service design (1st ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  8. Ferstl, O. K., & Sinz, E. J. (1995). Der Ansatz des Semantischen Objektmodells (SOM) zur Modellierung von Geschäftsprozessen. Wirtschaftsinformatik, 37(3), 211–220.Google Scholar
  9. Ferstl, O. K., & Sinz, E. J. (2013). Grundlagen der Wirtschaftsinformatik (7th ed.). München, Deutschland: De Gruyter Oldenbourg.Google Scholar
  10. Gane, C., & Sarson, T. (1979). Structured systems analysis: Tools and techniques. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  11. OMG. (2011). About the business process model and notation specification version 2.0. Retrieved September 23, 2018, from
  12. Rommelspacher, J. (2008). Ereignisgetriebene Architekturen. Wirtschaftsinformatik, 50(4), 314–317.CrossRefGoogle Scholar
  13. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991). Object-oriented modeling and design. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  14. Sinz, E. J. (1988). Das Strukturierte Entity-Relationship-Modell (SER-Modell). Angewandte Informatik, 5, 191–202.Google Scholar
  15. Strahringer, S. (2013). Konzeptuelle Modellierung von IS—Enzyklopaedie der Wirtschaftsinformatik. Retrieved September 23, 2018, from
  16. Thalheim, B. (2010). Towards a theory of conceptual modelling. Journal of Universal Computer Science, 16(20), 3102–3137.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of BambergBambergGermany

Personalised recommendations