Skip to main content

On the Immune Status of Patients with Colorectal Carcinoma

  • Chapter
  • First Online:
Emergency Surgical Management of Colorectal Cancer

Abstract

This chapter emphasizes the consequences of an immunocompromised status in patients with colorectal malignancies. In general, one can differentiate between the types of neoplasms through their location, genesis, as well as their specific cell structures and characteristics. Differentiation between these entities is meaningful, since it provides insights into the pathogenesis of colorectal neoplasms. Escape mechanisms can help tumor cells to avoid immunological control to start metastatic spread. Not only anatomy but also distinction in gene expression profiles and pathway activity can help to determine cancer-specific tumor progression and clinical outcome facilitating the development of new therapeutic targets. Other distinct endogenous factors as patients’ genetic background and immunodeficiency, together with exogenous factors as lifestyle, dietary intake and exposure to environmental stress determine the immunological status of a colorectal cancer patient.

In order to get a clear view on the complex factors that contribute to tumor development, progression and metastasis, immunological aspects must certainly not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamauchi M, et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut. 2012;61(6):847–54.

    Article  CAS  PubMed  Google Scholar 

  2. Beart RW, et al. Trends in right and left-sided colon cancer. Dis Colon Rectum. 1983;26(6):393–8.

    Article  CAS  PubMed  Google Scholar 

  3. Bufill JA. Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med. 1990;113(10):779–88.

    Article  CAS  PubMed  Google Scholar 

  4. Li FY, Lai MD. Colorectal cancer, one entity or three. J Zhejiang Univ Sci B. 2009;10(3):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rullier E, et al. Low rectal cancer: classification and standardization of surgery. Dis Colon Rectum. 2013;56(5):560–7.

    Article  PubMed  Google Scholar 

  6. Skinner SA, O’Brien PE. The microvascular structure of the normal colon in rats and humans. J Surg Res. 1996;61(2):482–90.

    Article  CAS  PubMed  Google Scholar 

  7. Lange JF, et al. Riolan’s arch: confusing, misnomer, and obsolete. A literature survey of the connection(s) between the superior and inferior mesenteric arteries. Am J Surg. 2007;193(6):742–8.

    Article  PubMed  Google Scholar 

  8. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.

    Article  CAS  PubMed  Google Scholar 

  9. Ebos JM, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15(3):232–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tartour E, et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 2011;30(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  11. Snaebjornsson P, et al. Colon cancer in Iceland—a nationwide comparative study on various pathology parameters with respect to right and left tumor location and patients age. Int J Cancer. 2010;127(11):2645–53.

    Article  CAS  PubMed  Google Scholar 

  12. Hansen IO, Jess P. Possible better long-term survival in left versus right-sided colon cancer - a systematic review. Dan Med J. 2012;59(6):A4444.

    PubMed  Google Scholar 

  13. Benedix F, et al. Colon carcinoma—classification into right and left sided cancer or according to colonic subsite?—Analysis of 29,568 patients. Eur J Surg Oncol. 2011;37(2):134–9.

    Article  CAS  PubMed  Google Scholar 

  14. American Cancer Society. What is colorectal cancer? 2018 [cited 2018 01-08-2018]. Available from: https://www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-cancer.html.

  15. Fleming FJ, Gillen P. Reversal of Hartmann’s procedure following acute diverticulitis: is timing everything? Int J Colorectal Dis. 2009;24(10):1219–25.

    Article  PubMed  Google Scholar 

  16. Ferlay J, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  CAS  PubMed  Google Scholar 

  17. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 4th ed. Minnesota: International Agency for Research on Cancer, University of Minnesota; 2010.

    Google Scholar 

  18. Hyngstrom JR, et al. Clinicopathology and outcomes for mucinous and signet ring colorectal adenocarcinoma: analysis from the National Cancer Data Base. Ann Surg Oncol. 2012;19(9):2814–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kang H, et al. A 10-year outcomes evaluation of mucinous and signet-ring cell carcinoma of the colon and rectum. Dis Colon Rectum. 2005;48(6):1161–8.

    Article  PubMed  Google Scholar 

  20. Verhulst J, et al. Mucinous subtype as prognostic factor in colorectal cancer: a systematic review and meta-analysis. J Clin Pathol. 2012;65(5):381–8.

    Article  CAS  PubMed  Google Scholar 

  21. Fleming M, et al. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol. 2012;3(3):153–73.

    PubMed  PubMed Central  Google Scholar 

  22. Chen JS, et al. Clinical outcome of signet ring cell carcinoma and mucinous adenocarcinoma of the colon. Chang Gung Med J. 2010;33(1):51–7.

    PubMed  Google Scholar 

  23. Leopoldo S, et al. Two subtypes of mucinous adenocarcinoma of the colorectum: clinicopathological and genetic features. Ann Surg Oncol. 2008;15(5):1429–39.

    Article  PubMed  Google Scholar 

  24. Bernick PE, et al. Neuroendocrine carcinomas of the colon and rectum. Dis Colon Rectum. 2004;47(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  25. Olevian DC, et al. Colorectal poorly differentiated neuroendocrine carcinomas frequently exhibit BRAF mutations and are associated with poor overall survival. Hum Pathol. 2016;49:124–34.

    Article  CAS  PubMed  Google Scholar 

  26. Smith JD, et al. A retrospective review of 126 high-grade neuroendocrine carcinomas of the colon and rectum. Ann Surg Oncol. 2014;21(9):2956–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kelemen LE, Kobel M. Mucinous carcinomas of the ovary and colorectum: different organ, same dilemma. Lancet Oncol. 2011;12(11):1071–80.

    Article  PubMed  Google Scholar 

  28. Borger ME, et al. Signet ring cell differentiation in mucinous colorectal carcinoma. J Pathol. 2007;212(3):278–86.

    Article  CAS  PubMed  Google Scholar 

  29. Mantovani A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    Article  CAS  PubMed  Google Scholar 

  30. Tsujino T, et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res. 2007;13(7):2082–90.

    Article  CAS  PubMed  Google Scholar 

  31. Hutchins GGA, et al. Intratumoral stromal morphometry predicts disease recurrence but not response to 5-fluorouracil-results from the QUASAR trial of colorectal cancer. Histopathology. 2018;72(3):391–404.

    Article  PubMed  Google Scholar 

  32. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gabbiani G, Hansson GK. ATVB in focus: smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23(3):379.

    Article  CAS  PubMed  Google Scholar 

  34. Aparicio T, et al. Matrix metalloproteinase inhibition prevents colon cancer peritoneal carcinomatosis development and prolongs survival in rats. Carcinogenesis. 1999;20(8):1445–51.

    Article  CAS  PubMed  Google Scholar 

  35. Jensen SA, et al. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells—associations with histopathology and patients outcome. Eur J Cancer. 2010;46(18):3233–42.

    Article  CAS  PubMed  Google Scholar 

  36. Garrido F, et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 1997;18(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  37. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    Article  CAS  PubMed  Google Scholar 

  38. Glebov OK, et al. Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomark Prev. 2003;12(8):755–62.

    CAS  Google Scholar 

  39. Birkenkamp-Demtroder K, et al. Differential gene expression in colon cancer of the caecum versus the sigmoid and rectosigmoid. Gut. 2005;54(3):374–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elder DJ, et al. Human colorectal adenomas demonstrate a size-dependent increase in epithelial cyclooxygenase-2 expression. J Pathol. 2002;198(4):428–34.

    Article  CAS  PubMed  Google Scholar 

  41. Eberhart CE, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107(4):1183–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ogino S, et al. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin Cancer Res. 2008;14(24):8221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baxter NT, et al. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome. 2014;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kostic AD, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei Z, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget. 2016;7(29):46158–72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92(18):1500–10.

    Article  CAS  PubMed  Google Scholar 

  47. Penn I, Starzl TE. Malignant tumors arising de novo in immunosuppressed organ transplant recipients. Transplantation. 1972;14(4):407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Merchea A, et al. Outcomes of colorectal cancer arising in solid organ transplant recipients. J Gastrointest Surg. 2014;18(3):599–604.

    Article  PubMed  Google Scholar 

  49. Lee HS, et al. Is a stricter colonoscopy screening protocol necessary in liver transplant recipients? Comparison with an average-risk population. Dis Colon Rectum. 2014;57(8):976–82.

    Article  PubMed  Google Scholar 

  50. Ming JE, Stiehm ER, Graham JM Jr. Syndromic immunodeficiencies: genetic syndromes associated with immune abnormalities. Crit Rev Clin Lab Sci. 2003;40(6):587–642.

    Article  CAS  PubMed  Google Scholar 

  51. Chinen J, Shearer WT. 6. Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol. 2008;121(2. Suppl):S388–S392; quiz S417.

    Article  CAS  PubMed  Google Scholar 

  52. Delamaire M, et al. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  53. Fouda GG, et al. The impact of IgG transplacental transfer on early life immunity. Immunohorizons. 2018;2(1):14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pawelec G, et al. Human immunosenescence: does it have an infectious component? Ann N Y Acad Sci. 2006;1067:56–65.

    Article  CAS  PubMed  Google Scholar 

  55. Langley RE, et al. Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer. 1997;75(5):666–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol. 2004;195(3):298–308.

    Article  CAS  PubMed  Google Scholar 

  57. Giannoudis PV. Current concepts of the inflammatory response after major trauma: an update. Injury. 2003;34(6):397–404.

    Article  CAS  PubMed  Google Scholar 

  58. Theilacker C, et al. Overwhelming postsplenectomy infection: a prospective multicenter cohort study. Clin Infect Dis. 2016;62(7):871–8.

    Article  PubMed  Google Scholar 

  59. Covinsky KE, et al. The relationship between clinical assessments of nutritional status and adverse outcomes in older hospitalized medical patients. J Am Geriatr Soc. 1999;47(5):532–8.

    Article  CAS  PubMed  Google Scholar 

  60. Wilson D, et al. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017;36:1–10.

    Article  PubMed  Google Scholar 

  61. Walston J, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc. 2006;54(6):991–1001.

    Article  PubMed  Google Scholar 

  62. Mudge AM, et al. Helping understand nutritional gaps in the elderly (HUNGER): a prospective study of patient factors associated with inadequate nutritional intake in older medical inpatients. Clin Nutr. 2011;30(3):320–5.

    Article  PubMed  Google Scholar 

  63. Hu WH, et al. Preoperative malnutrition assessments as predictors of postoperative mortality and morbidity in colorectal cancer: an analysis of ACS-NSQIP. Nutr J. 2015;14:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Slieker JC, et al. Long-term and perioperative corticosteroids in anastomotic leakage: a prospective study of 259 left-sided colorectal anastomoses. Arch Surg. 2012;147(5):447–52.

    Article  PubMed  Google Scholar 

  65. Ostenfeld EB, et al. Use of systemic glucocorticoids and the risk of colorectal cancer. Aliment Pharmacol Ther. 2013;37(1):146–52.

    Article  CAS  PubMed  Google Scholar 

  66. Ziegler MA, et al. Risk factors for anastomotic leak and mortality in diabetic patients undergoing colectomy: analysis from a statewide surgical quality collaborative. Arch Surg. 2012;147(7):600–5.

    Article  PubMed  Google Scholar 

  67. Lake JP, et al. Effect of high-dose steroids on anastomotic complications after proctocolectomy with ileal pouch-anal anastomosis. J Gastrointest Surg. 2004;8(5):547–51.

    Article  PubMed  Google Scholar 

  68. Tresallet C, et al. Effect of systemic corticosteroids on elective left-sided colorectal resection with colorectal anastomosis. Am J Surg. 2008;195(4):447–51.

    Article  CAS  PubMed  Google Scholar 

  69. Vignali A, et al. Effect of prednisolone on local and systemic response in laparoscopic vs. open colon surgery: a randomized, double-blind, placebo-controlled trial. Dis Colon Rectum. 2009;52(6):1080–8.

    Article  PubMed  Google Scholar 

  70. Yu HC, et al. Avoiding perioperative dexamethasone may improve the outcome of patients with rectal cancer. Eur J Surg Oncol. 2015;41(5):667–73.

    Article  CAS  PubMed  Google Scholar 

  71. Gong J, et al. Use of thiopurines and risk of colorectal neoplasia in patients with inflammatory bowel diseases: a meta-analysis. PLoS One. 2013;8(11):e81487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Myrelid P, et al. Thiopurine therapy is associated with postoperative intra-abdominal septic complications in abdominal surgery for Crohn’s disease. Dis Colon Rectum. 2009;52(8):1387–94.

    Article  PubMed  Google Scholar 

  73. Actis GC, et al. Azathioprine, mucosal healing in ulcerative colitis, and the chemoprevention of colitic cancer: a clinical-practice-based forecast. Inflamm Allergy Drug Targets. 2010;9(1):6–9.

    Article  CAS  PubMed  Google Scholar 

  74. Silverberg MJ, et al. Cumulative incidence of cancer among persons with HIV in North America: a cohort study. Ann Intern Med. 2015;163(7):507–18.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bini EJ, Green B, Poles MA. Screening colonoscopy for the detection of neoplastic lesions in asymptomatic HIV-infected subjects. Gut. 2009;58(8):1129–34.

    Article  CAS  PubMed  Google Scholar 

  76. Alfa-Wali M, et al. Colorectal cancer in HIV positive individuals: the immunological effects of treatment. Eur J Cancer. 2011;47(16):2403–7.

    Article  PubMed  Google Scholar 

  77. Coghill AE, et al. Rectal squamous cell carcinoma in immunosuppressed populations: is this a distinct entity from anal cancer? AIDS. 2016;30(1):105–12.

    CAS  PubMed  Google Scholar 

  78. Scott H, et al. Routine anal cytology screening for anal squamous intraepithelial lesions in an urban HIV clinic. Sex Transm Dis. 2008;35(2):197–202.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim P. Edomskis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edomskis, P.P., Lambrichts, D.P.V., Lange, J.F. (2019). On the Immune Status of Patients with Colorectal Carcinoma. In: de'Angelis, N., Di Saverio, S., Brunetti, F. (eds) Emergency Surgical Management of Colorectal Cancer. Hot Topics in Acute Care Surgery and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-06225-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06225-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06224-8

  • Online ISBN: 978-3-030-06225-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics