Skip to main content

Introduction

  • Chapter
  • First Online:
Impulsive Systems on Hybrid Time Domains

Part of the book series: IFSR International Series in Systems Science and Systems Engineering ((IFSR,volume 33))

  • 509 Accesses

Abstract

Impulsive systems (systems of impulsive differential equations) model real world processes that undergo abrupt changes (impulses) in the state at a sequence of discrete times. These abrupt changes in systems’ states inspire the impulsive control mechanism. The theory of impulsive differential equations and its applications to impulsive control problems has been an active research area since 1990s. On the other hand, time-delay systems have been intensively studied in the past decades, mainly due to the ubiquity of time delays in physical processes such as proliferation process for solid avascular tumour, scattering process, milling process, and temperature control. Stability is one of the fundamental issues in system design, analysis and control. Recently, impulsive control has been shown to be a powerful approach to stabilize time-delay systems, and various stability and stabilization results have been obtained for impulsive time-delay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Akca, V. Covachev, Z. Covacheva, Discrete-time counterparts of impulsive Hop field neural networks with leakage delays, in Springer Proceedings in Mathematics and Statistics: Differential and Difference Equations with Applications, vol. 47, pp. 351–358 (2013)

    Article  MATH  Google Scholar 

  2. F.M. Atici, D.C. Biles, A. Lebedinsky, An application of time scales to economics. Math. Comput. Model. 43, 718–726 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. Bartosiewicz, E. Pawluszewicz, Realizations of linear control systems on timescales. Control Cybern. 35(4), 769–786 (2006)

    MATH  Google Scholar 

  4. Z. Bartosiewicz, E. Pawluszewicz, Realizations of nonlinear control systems on timescales. IEEE Trans. Autom. Control 53(2), 571–575 (2008)

    Article  MATH  Google Scholar 

  5. M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications (Birkhäuser, Boston, 2001)

    Book  MATH  Google Scholar 

  6. M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales (Birkhäuser, Boston, 2003)

    Book  MATH  Google Scholar 

  7. A. Chen, D. Du, Global exponential stability of delayed BAM networks on timescales. Neurocomputing 71, 3582–3588 (2008)

    Article  Google Scholar 

  8. W.H. Chen, W.X. Zeng, Exponential stability of nonlinear time delay systems with delayed impulse effects. Automatica 47(5), 1075–1083 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.K. Choi, N.J. Koo, On the stability of linear dynamic systems on time scales. J. Differ. Equ. Appl. 15(2), 167–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Dashkovskiya, M. Kosmykovb, A. Mironchenkob, L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods. Nonlinear Anal. Hybrid Syst. 6(3), 899–915 (2012)

    Article  MathSciNet  Google Scholar 

  11. M. di Bernardo, A. Salvi, S. Santini, Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans. Intell. Transp. Syst. 16(1), 102–112 (2015)

    Article  Google Scholar 

  12. T.S. Doana, A. Kalauch, S. Siegmunda, F.R. Wirthb, Stability radii for positive linear time-invariant systems on time scales. Syst. Control Lett. 59(3–4), 173–179 (2010)

    Article  MathSciNet  Google Scholar 

  13. T. Faira, M.C. Gadotti, J.J. Oliveira, Stability results for impulsive functional differential equations with infinite delay. Nonlinear Anal. Theory, Methods Appl. 75(18), 6570–6587 (2012)

    Google Scholar 

  14. U. Fory, M. Bodnar, Time delays in proliferation process for solid avascular tumor. Math. Comput. Model. 37(11), 1201–1209 (2003)

    Article  MATH  Google Scholar 

  15. G.S. Guiseinov, E. Ozyylmaz, Tangent lines of generalized regular curves parameterized by time scales. Turk. J. Math. 25, 553–562 (2001)

    Google Scholar 

  16. S. Hilger, Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD. Thesis, Universität Würzburg (1988, in German)

    Google Scholar 

  17. S. Hong, Stability criteria for set dynamic equations on time scales. Comput. Math. Appl. 59(11), 3444–3457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.S. Hurd, J.B. Kaneene, J.W. Lloyd, A stochastic distributed-delay model of disease processes in dynamic populations. Prev. Vet. Med. 16(1), 21–29 (1993)

    Article  Google Scholar 

  19. A. Khadra, X. Liu, X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses. IEEE Trans. Autom. Control 4(4), 923–928 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations (Kluwer Academic Publishers, Dordrecht, 1999)

    Book  MATH  Google Scholar 

  21. V. Lakshmikantham, X. Liu, Stability Analysis in Terms of Two Measures (World Scientific, River Edge, 1993)

    Book  MATH  Google Scholar 

  22. V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains (Kluwer Academic Publishers, Boston, 1996)

    Book  MATH  Google Scholar 

  23. V. Lakshmikantham, A.S. Vatsala, Hybrid systems on time scales. J. Comput. Appl. Math. 141(1–2), 227–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Li, J. Shen, New comparison results for impulsive functional differential equations. Appl. Math. Lett. 23(4), 487–493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control. IEEE Trans. Autom. Control 62(1), 406–411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses. Automatica 64, 63–69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. X. Li, X. Zhang, S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems. Automatica 76, 378–382 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Li, X. Chen, L. Zhao, Stability and existence of periodic solutions to delayed Chhen-Grossberg BAM neural networks with impulses on time scales. Neurocomputing 72, 1621–1630 (2008)

    Article  Google Scholar 

  29. B. Liu, D.J. Hill, Comparison principle and stability of discrete-time impulsive hybrid systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 56(1), 233–245 (2009)

    Article  MathSciNet  Google Scholar 

  30. B. Liu, D.J. Hill, Uniform stability of large-scale delay discrete impulsive systems. Int. J. Control 82(2), 228–240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Liu, D.J. Hill, Uniform stability and ISS of discrete-time impulsive hybrid systems. Nonlinear Anal. Hybrid Syst. 4(2), 319–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Liu, X. Liu, W.C. Xie, Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica 47(5), 899–908 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Liu, S. Shen, Y. Zhang, Q. Wang, Stability criteria for impulsive systems with time delay and unstable system matrices. IEEE Trans. Circuits Syst. I Regul. Pap. 54(10), 2288–2298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. X. Liu, K. Zhang, Impulsive control for stabilisation of discrete delay systems and synchronisation of discrete delay dynamical networks. IET Control Theory Appl. 8(13), 1185–1195 (2014)

    Article  MathSciNet  Google Scholar 

  35. X. Liu, K. Zhang, Existence, uniqueness and stability results for functional differential equations on time scales. Dyn. Syst. Appl. 25(4), 501–530 (2016)

    MathSciNet  MATH  Google Scholar 

  36. X. Liu, K. Zhang, Stabilization of nonlinear time-delay systems: distributed-delay dependent impulsive control. Syst. Control Lett. 120, 17–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. X. Liu, K. Zhang, W.C. Xie, Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses. Automatica 72, 147–152 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. X. Liu, K. Zhang, W.C. Xie, Stabilization of time-delay neural networks via delayed pinning impulses. Chaos Solitions Fractals 93, 223–234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. X. Liu, K. Zhang, W.C. Xie, Consensus seeking in multi-agent systems via hybrid protocols with impulse delays. Nonlinear Anal. Hybrid Syst. 25, 90–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. X. Liu, K. Zhang, W.C. Xie, Pinning impulsive synchronization of reaction-diffusion neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1055–1067 (2017)

    Article  Google Scholar 

  41. X. Liu, K. Zhang, W.C. Xie, Consensus of multi-agent systems via hybrid impulsive protocols with time-delay. Nonlinear Anal. Theory Methods Appl. 30, 134–146 (2018)

    MathSciNet  MATH  Google Scholar 

  42. X. Liu, K. Zhang, W.C. Xie, Impulsive consensus of networked multi-agent systems with distributed delays in agent dynamics and impulsive protocols. J. Dyn. Syst. Meas. Control (2018). https://doi.org/10.1115/1.4041202

    Google Scholar 

  43. X. Liu, Z. Zhang, Uniform asymptotic stability of impulsive discrete systems with time delay. Nonlinear Anal. Theory Methods Appl. 74(15), 4941–4950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. X.H. Long, B. Balachandran, B.P. Mann, Dynamics of milling processes with variable time delays. Nonlinear Dyn. 47(1–3), 49–63 (2007)

    MATH  Google Scholar 

  45. Y. Ma, J. Sun, Stability criteria of delayed impulsive systems on time scales. Nonlinear Anal. Theory Methods Appl. 67(4), 1181–1189 (2007)

    Article  MATH  Google Scholar 

  46. Y. Ma, J. Sun, Stability criteria of impulsive systems on time scales. J. Comput. Appl. Math. 213(2), 400–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Mohamad, K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput. 135(1), 17–38 (2003)

    MathSciNet  MATH  Google Scholar 

  48. A.A. Movchan, Stability of processes with respect to two matrices. Prikladnaya Matematika i Mekhanika 24, 988–1001 (1960)

    Google Scholar 

  49. S. Pan, J. Sun, S. Zhao, Robust filtering for discrete time piecewise impulsive systems. Signal Process. 90(1), 324–330 (2010)

    Article  MATH  Google Scholar 

  50. S. Peng, Y. Zhang, Razumikhin-type theorems on pth moment exponential stability of impulsive stochastic delay differential equations. IEEE Trans. Autom. Control 55(8), 1917–1922 (2010)

    Article  MATH  Google Scholar 

  51. C. Pozsche, S. Siegmund, F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete Contin. Dynam. Syst. A 9(5), 1223–1241 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. L. Salvadori, Some contributions to asymptotic stability theory. Annales de la Societé Scientifique de Bruxelles 88, 183–194 (1974)

    MathSciNet  MATH  Google Scholar 

  53. G.P. Samanta, Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Nonlinear Anal. Real World Appl. 12(2), 1163–1177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Sassoli de Bianchi, Time-delay of classical and quantum scattering processes: a conceptual overview and a general definition. Centr. Eur. J. Phys. 10(2), 282–319 (2012)

    Google Scholar 

  55. I.M. Stamova, Impulsive control for stability of n-species Lotka-Volterra cooperation models with finite delays. Appl. Math. Lett. 23(9), 1003–1007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. P. Wang, M. Wu, On the ϕ 0-stability of impulsive dynamic system on time scales. Electron. J. Differ. Equ. 128, 1–7 (2005)

    MathSciNet  Google Scholar 

  57. P. Wang, M. Wu, Practical ϕ 0-stability of impulsive dynamic systems on time scales. Appl. Math. Lett. 20(6), 651–658 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Q. Wang, X. Liu, Exponential stability of impulsive cellular neural networks with time delay via Lyapunov functionals. Appl. Math. Comput. 194(1), 186–198 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Q. Wang, Q. Zhu, Razumikhin-type stability criteria for differential equations with delayed impulses. Electron. J. Qual. Theory Differ. Equ. 14, 1–18 (2013)

    MathSciNet  MATH  Google Scholar 

  60. K. Wu, X. Ding, Impulsive stabilization of delay difference equations and its application in Nicholson’s blowflies model. Adv. Differ. Equ. 2012(88) (2012). https://doi.org/10.1186/1687-1847-2012-88

  61. S. Wu, C. Li, X. Liao, S. Duan, Exponential stability of impulsive discrete systems with time delay and applications in stochastic neural networks: a Razumikhin approach. Neurocomputing 82(1), 29–36 (2012)

    Article  Google Scholar 

  62. Z. Yang, D. Xu, Stability analysis and design of impulsive control systems with time delay. IEEE Trans. Autom. Control 52(8), 1448–1454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Zennaro, A. Ahmad, L. Vangelista, E. Serpedin, H. Nounou, M. Nounou, Network-wide clock synchronization via message passing with exponentially distributed link delays. IEEE Trans. Commun. 61(5), 2012–2024 (2013)

    Article  Google Scholar 

  64. Z. Zhan, W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales. Appl. Math. Comput. 215, 2070–2081 (2009)

    MathSciNet  MATH  Google Scholar 

  65. K. Zhang, Stability and control of impulsive systems on time scales. PhD Thesis, Shandong University (2013)

    Google Scholar 

  66. K. Zhang, Impulsive control of dynamical networks. PhD Thesis, University of Waterloo (2017)

    Google Scholar 

  67. K. Zhang, X. Liu, Impulsive control of a class of discrete chaotic systems with parameter uncertainties, in The Proceedings of the 8th World Congress on Intelligent Control and Automation, 7–9 July 2010, Jinan, pp. 3691–3695 (2010)

    Google Scholar 

  68. K. Zhang, X. Liu, Controllability and observability of linear time-varying impulsive systems on time scales. AIP Conf. Proc. 1368(1), 25–28 (2011)

    Article  Google Scholar 

  69. K. Zhang, X. Liu, Stability in terms of two measures for nonlinear impulsive systems on time scales by comparison method. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19(2), 145–176 (2012)

    MathSciNet  MATH  Google Scholar 

  70. K. Zhang, X. Liu, Stability in terms of two measures for nonlinear impulsive systems on time scales. J. Appl. Math. Article ID 313029, 12 pp. (2013)

    Google Scholar 

  71. K. Zhang, X. Liu, Global exponential stability of nonlinear impulsive discrete systems with time delay, in The Proceedings of the 25th Chinese Control and Decision Conference, 25–27 May 2013, Guiyang, pp. 148–153 (2013)

    Google Scholar 

  72. K. Zhang, X. Liu, X.C. Xie, Global exponential stability of discrete-time delay systems subject to impulsive perturbations, in The Proceedings of the 4th International Conference on Complex Systems and Applications, 23–26 June 2014, Le Havre, pp. 239–244 (2014)

    Google Scholar 

  73. K. Zhang, X. Liu, W.C. Xie, Impulsive control and synchronization of spatiotemporal chaos in the Gray-Scott Model, in Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, ed. by M. Cojocaru, I. Kotsireas, R. Makarov, R. Melnik, H. Shodiev. Springer Proceedings in Mathematics and Statistics, vol. 117 (Springer, Cham, 2015), pp. 549–555

    Google Scholar 

  74. K. Zhang, X. Liu, W.C. Xie, Pinning stabilization of cellular neural networks with time-delay via delayed impulses, in Mathematical and Computational Approaches in Advancing Modern Science and Engineering, ed. by J. Bélair, I. Frigaard, H. Kunze, R. Makarov, R. Melnik, R. Spiteri (Springer, Cham, 2016), pp. 763–773

    Google Scholar 

  75. Y. Zhang, Exponential stability of impulsive discrete systems with time delays. Appl. Math. Lett. 26(12), 2290–2297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Y. Zhang, J. Sun, G. Feng, Impulsive control of discrete systems with time delay. IEEE Trans. Autom. Control 54(4), 830–834 (2009)

    Article  MathSciNet  Google Scholar 

  77. Z. Zhang, Rubost H control of a class of discrete impulsive switched systems. Nonlinear Anal. Theory Methods Appl. 71(12), e2790–e2796 (2009)

    Article  MATH  Google Scholar 

  78. Z. Zhang, X. Liu, Robust stability of uncertain discrete impulsive switching systems. Comput. Math. Appl. 58(2), 380–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X., Zhang, K. (2019). Introduction. In: Impulsive Systems on Hybrid Time Domains. IFSR International Series in Systems Science and Systems Engineering, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-06212-5_1

Download citation

Publish with us

Policies and ethics