Skip to main content

Comparison of Solar-Selective Absorbance Properties of TiN, TiNxOy, and TiO2 Thin Films

  • Conference paper
  • First Online:
Energy Technology 2019

Abstract

TiN , TiNxOy , and TiO2 thin films share many properties such as electrical, and optical properties . In this work, a comparison is made between TiN , TiNxOy , and TiO2 thin films deposited by RF magnetron sputtering (reactive sputtering) using the same pure titanium target, Argon (Ar) flow rate, nitrogen flow rates, and deposition time. In the case of TiNxOy thin film, oxygen is pumped in addition. TiO2 is obtained by annealing the sputtered TiN thin films, which were subsequently annealed at 800 °C for 2 h in air after sputtering. The optical properties of the thin films were characterized by a spectrophotometer, and Fourier-transform infrared spectroscopy (FTIR). The morphology and structure were studied by scanning electron microscope (SEM ), atomic force microscope (AFM), and X-ray diffraction (XRD). The results show that TiN and TiNxOy thin films have metal-like behaviour with some similarities in structure and microstructure and differences in optical absorbance. After annealing the TiN layer, the optical absorbance of the TiO2 is equal to 94% with a stable profile at ultraviolet, visible, and near infrared ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jelley N, Smith T (2015) Concentrated solar power: recent developments and future challenges. Proc Inst Mech Eng Part A J Power Energy 229:693–713

    Article  Google Scholar 

  2. Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    Article  CAS  Google Scholar 

  3. Behar O, Khellaf A, Mohammedi K (2013) A review of studies on central receiver solar thermal power plants. Renew Sustain Energy Rev 23:12–39

    Article  Google Scholar 

  4. Barshilia HC, Selvakumar N, Rajam KS (2006) TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications. Appl Phys Lett 89:1–3

    Article  Google Scholar 

  5. Tharamani CN, Mayanna SM (2007) Low-cost black Cu–Ni alloy coatings for solar selective applications. Sol Energy Mater Sol Cells 91:664–669

    Article  CAS  Google Scholar 

  6. Glaude AS, Bousquet I, Thomas L, Flamant G (2013) Optical ulti-lay of ulti-layered coatings based on SiC(N)H materials for their potential use as high-temperature solar selective absorbers. Sol Energy Mater Sol Cells 117:315–323

    Article  Google Scholar 

  7. Seiffert C, Eisenhammer T, Lazarov M, Sizmann R, Blessing R (1993) Test facility for solar selective materials. ISES Solar World Congress 2:321

    Google Scholar 

  8. Zhang J, Chen TP, Liu YC, Liu Z, Yang HY (2016) Design of a high performance selective solar absorber with the structure of SiO2-TiO2-TiNxOy-Cu. ECS J Solid State Sci Technol 5(7):N43–N47

    Article  CAS  Google Scholar 

  9. Zhang K, Hao L, Du M, Mi J, Wang JN, Meng JP (2017) A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renew Sustain Energy Rev 67:1282–1299

    Article  CAS  Google Scholar 

  10. Lazarov MP, Sizmann R, Frei U (1993) Optimization of SiO2-TiNxOy-Cu interference absorbers: numerical and experimental results. SPIE Proceedings

    Google Scholar 

  11. Chen F, Wang SW, Yu L, Chen X, Lu W (2014) Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings. Opt Mater Express 4:1833–1847

    Article  CAS  Google Scholar 

  12. Mehdi HK, Alexander A, Berezin U, Nobuhiko F (2000) Formation of thin TiNxOy films by using a hollow cathode reactive DC sputtering system. Thin Solid Films 372:70–77

    Article  Google Scholar 

  13. Liu Z, Liu G, Huang Z, Liu X, Fu G (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352

    Article  CAS  Google Scholar 

  14. Yin Y, Hang L, Zhang S, Bui XL (2007) Thermal oxidation properties of titanium nitride and titanium–aluminium nitride materials—A perspective for high temperature air-stable solar selective absorber applications. Thin Solid Films 515(5):2829–2832

    Article  CAS  Google Scholar 

  15. Cao F, Tang L, Li Y, Litvinchuk AP, Bao J, Ren Z (2017) A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in SiO2 deposited on lanthanum aluminate. Sol Energy Mater Sol Cells 160:12–17

    Article  CAS  Google Scholar 

  16. Gao XH, Guo ZM, Geng QF, Ma PJ, Wang AQ, Liu G (2017) Enhanced optical properties of TiN-based spectrally selective solar absorbers deposited at a high substrate temperature. Sol Energy Mater Sol Cells 163:91–97

    Article  CAS  Google Scholar 

  17. Chen HY, Lu FH (2005) Oxidation behaviour of titanium nitride films. J Vac Sci Technol A 23: 1006

    Article  CAS  Google Scholar 

  18. Carbonari MJ, Martinelli JR (2001) Effects of hot isostatic pressure on titanium nitride films deposited by physical vapour deposition. Mat Res 4(3):163–168

    Article  CAS  Google Scholar 

  19. Chakraborty J, Maity T, Kumar K, Mukherjee S (2014) Microstructure, stress and texture in sputter deposited TiN thin films: effect of substrate bias. Adv Mater Res 996:855–859

    Article  Google Scholar 

  20. Liang H, Xu J, Zhou D, Sun X, Chu S, Bai Y (2016) Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering. Ceram Int 42:2642–2647

    Article  CAS  Google Scholar 

  21. Zhou T, Liu D, Zhang Y, Ouyang T, Suo J (2016) Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering. J Alloy Compd 688:44–50

    Article  CAS  Google Scholar 

  22. Popovic M, Novaković M, Bibić N (2015) Annealing effects on the properties of TiN thin films. Proc. Appl. Ceram. 9(2):67–71

    Article  CAS  Google Scholar 

  23. Piallat F, Gassilloud R, Caubet P, Vallée C (2016) Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break. J Vac Sci Technol A 34(5). https://doi.org/10.1116/1.4960648

    Article  Google Scholar 

  24. Ajenifuja E, Fasasi AY, Osinkolu GA (2012) Sputtering-pressure dependent optical and microstructural properties variations in DC reactive magnetron sputtered titanium nitride thin films. Trans Indian Ceram Soc 71(4):181–188

    Article  CAS  Google Scholar 

  25. Penilla E, Wang J (2008) Pressure and temperature effects on stoichiometry and microstructure of nitrogen-rich TiN thin films synthesized via reactive magnetron DC-sputtering. J Nanomat 2008:267161

    Article  Google Scholar 

  26. Zhang L, Yang H, Pang X, Gao K, Volinsky AA (2013) Microstructure, residual stress, and fracture of sputtered TiN films. Surf Coat Technol 224:120–125

    Article  CAS  Google Scholar 

  27. Kennedy CE (2002) Review of Mid. To high-temperature solar selective absorber Materials. National Renewable Energy Laboratory. 520: 31267

    Google Scholar 

  28. Juan C, Fernando F, María HA, Raquel P, Silvia S, Sergio GR, Victor PO (2013) Design of advanced photocatalytic materials for energy and environmental applications, vol 10, p 1007

    Google Scholar 

  29. Tang L, Cao F, Li Y, Bao J, Ren Z (2016) High performance mid-temperature selective absorber based on titanium oxides cermet deposited by direct current reactive sputtering of a single titanium target. J Appl Phys 119:045102

    Article  Google Scholar 

  30. Ollier E, Dunoyer N, Szambolics H, Lorin G (2017) Nanostructured thin films for solar selective absorbers and infrared selective emitters. Sol Energy Mater Sol Cells 170:205–210

    Article  CAS  Google Scholar 

  31. Brunotte A, Lazarov M, Sizmann R (1992) Calorimetric measurements of the total hemispherical emittance of selective surfaces at high temperatures. SPIE. 1727:149

    CAS  Google Scholar 

  32. Meriea V, Pustana M, Negreab G, Bîrleanu C (2015) Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications. Appl Surf Sci 358:525–532

    Article  Google Scholar 

  33. Vaz F, Cerqueira P, Rebouta L, Nascimento SMC, Alves E, Goudeauc P, Rivière JP (2003) Surf Coat Technol 174–175:197–203

    Google Scholar 

  34. Zheng K, Zhang TC, Lin P, Han YH, Li HV, Ji RJ, Zhang HV (2015) Nitroaniline degradation by TiO2 catalyst doping with manganese, Hindawi Publishing Corporation. J Chem 2015:382376

    Google Scholar 

  35. Bonelli M, Guzman LA, Miotello A, Calliari L, Elena M, Ossi PM (1992) Structure and optical properties of TiN films prepared by dc sputtering and by ion beam assisted deposition. Vacuum 43(5–7):459–462

    Article  CAS  Google Scholar 

  36. Smith GB, Swift PD, Bendavid A (1999) TiNx films with metallic behaviour at high N/Ti ratios for better solar control windows. Appl Phys Lett 75(5):630

    Article  CAS  Google Scholar 

  37. Carvalho P, Vaz F, Rebouta L, Cunha L, Tavares CJ, Moura C, Alves E, Cavaleiro A, Goudeau PH, Le Bourhis E, Riviere JP, Pierson JF, Banakh O (2005) Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films. J Appl Phys 98(2):023715

    Article  Google Scholar 

  38. Graciani J, Hamad S, Sanz JF (2009) Changing the physical and chemical properties of titanium oxynitrides TiN1xOx by changing the composition. Phys Rev B 80(18):184112

    Article  Google Scholar 

  39. Zhao Z, Tian J, Sang Y, Cabot A, Liu H (2015) Structure, synthesis, and applications of TiO2 nanobelts. Adv Mater 27(16):2557–2582

    Article  CAS  Google Scholar 

  40. Yin Y, Hang L, Zhang S, Bui XL (2007) Thermal oxidation properties of titanium nitride and titanium–aluminium nitride materials—A perspective for high temperature air-stable solar selective absorber applications. Thin Solid Films 515:2829–2832

    Article  CAS  Google Scholar 

  41. Khan MI, Bhatti KA, Qindeel R, Althobaiti HS, Alonizan N (2017) Structural, electrical, and optical properties of multilayer TiO2 thin films deposited by sol-gel spin coating. Res Phys 7:1437–1439

    Google Scholar 

Download references

Acknowledgements

The authors thank the Center of Excellence, Nano Technology center in Egypt, and the Science & Technology Development Fund (STDF) of Egypt Project No. 10663.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman El Mahallawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Fattah, H.A., Mahallawi, I.E., Shazly, M., Khalifa, W. (2019). Comparison of Solar-Selective Absorbance Properties of TiN, TiNxOy, and TiO2 Thin Films. In: Wang, T., et al. Energy Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06209-5_26

Download citation

Publish with us

Policies and ethics