Skip to main content

The Influence of Phosphorus Dopant on the Structural and Mechanical Properties of Silicon

  • Conference paper
  • First Online:
Book cover Energy Technology 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1486 Accesses

Abstract

Phosphorus (P) is widely used as n-type dopant for silicon (Si) to form the emitter layer in wafer-based silicon solar cells . The main purpose of this work is to investigate the influence of P doping on the structural and mechanical properties of silicon . CASTEP program, which uses the density functional theory (DFT), with a plane-wave basis, is used to study the structural, electronic, and mechanical properties of undoped and P-doped Si (Si1−xPx for 0.0001 ≤ x ≤ 0.05). The density of states (DOS), band structure, elastic constants, bulk modulus \( \left( B \right) \), Young’s modulus (E), Shear modulus \( \left( G \right) \), and Poisson’s ratio (v) were all calculated. It is found that brittleness of Si increased by P doping .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfrommer BG, Cộté M, Louie SG, Cohen ML (1997) Ab initio study of silicon in the R8 phase. Phys Rev B 56(15):6662–6668

    Article  CAS  Google Scholar 

  2. Bernstein N, Mehl MJ, Papaconstantopoulos DA (2000-I) Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model. Phys Rev B 62(7):4477–4487

    Article  CAS  Google Scholar 

  3. Güler E, Güler M (2013) Geometry optimization calculations for the elasticity of gold at high pressure. Adv Mater Sci Eng 2013:525673

    Article  Google Scholar 

  4. Pi Xiaodong (2012) Doping silicon nanocrystals with boron and phosphorus. J Nanomater 2012:912903

    Article  Google Scholar 

  5. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Mater. 14:2717–2744

    Article  CAS  Google Scholar 

  6. Zhu W, Xiao H (2008) Ab initio study of electronic structure and optical properties of heavy-metal azides: TlN3, AgN3, and CuN3. J Comput Chem 29:176–184

    Article  CAS  Google Scholar 

  7. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  8. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  9. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  CAS  Google Scholar 

  10. Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61(12):7877–7882

    Article  CAS  Google Scholar 

  11. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  12. Wortman JJ, Evans RA (1965) Youngs’ modulus, shear modulus and Poisson’s ratio in silicon and germanium. J Appl Phys 36:153–156

    Article  CAS  Google Scholar 

  13. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2004) Tests of a ladder of density functionals for bulk solids and surfaces. Phys Rev B 69:075102

    Article  Google Scholar 

  14. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  15. Haas Philipp, Tran Fabien, Blaha Peter (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104

    Article  Google Scholar 

  16. Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  17. Hébert C, Luitz J, Schattschneider P (2003) Improvement of energy loss near edge structure calculation using Wien2k. Micron 34:219–225

    Article  Google Scholar 

  18. Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413

    Article  CAS  Google Scholar 

  19. Prikhodko M, Miao MS, Lambrecht WRL (2002) Pressure dependence of sound velocities in 3C-SiC and their relation to the high-pressure phase transition. Phys Rev B 66:125201

    Article  Google Scholar 

  20. Güler E, Güler M (2015) Elastic and mechanical properties of cubic diamond under pressure. Chin J Phys 53(2):040807

    Google Scholar 

  21. Schall JD, Gao G, Harrison JA (2008) Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential. Phys Rev B 77:115209

    Article  Google Scholar 

  22. Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Harris J, Schmidt PC (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Internet 11:23–32

    CAS  Google Scholar 

  23. Evecen M, Ciftci YO (2017) First-principles study on the structural, elastic, electronic and vibrational properties of scandium based intermetallic compounds (ScX, X = Co, Rh and Ir) under pressure. J Nanoelectron Optoelectron 12:100–108

    Article  CAS  Google Scholar 

  24. Güler E, Güler M (2014) Phase transition and elasticity of gallium arsenide under pressure. Mater Res Ibero Am J 17(5):1268–1272

    Google Scholar 

  25. Bensalem S, Chegaar M, Maouche D, Bouhemadou A (2014) Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. J Alloy Compd 589:137–142

    Article  CAS  Google Scholar 

  26. Fatima B, Chouhan SS, Acharya N, Sanyal SP (2014) Theoretical prediction of the electronic structure, bonding behavior and elastic moduli of scandium intermetallics. Internet 53:129–139

    CAS  Google Scholar 

  27. Güler M, Güler E (2013) Embedded atom method-based geometry optimization aspects of body-centered cubic metals. Chin Phys Lett 30(5):056201

    Article  Google Scholar 

  28. Guo Y, Wang Q, Kawazoe Y, Jena P (2015) A New silicon phase with direct band gap and novel optoelectronic properties. Sci Rep 5:14342

    Article  CAS  Google Scholar 

  29. Anderson HL (ed) (1989) A Physicist’s desk reference, The second edition of physics Vade Mecum. American Institute of Physics, New York

    Google Scholar 

  30. George A (1997) Elastic constants and moduli of diamond cubic Si. In: Hull R (ed). Properties of crystalline silicon 20, EMIS Data reviews, INSPEC, IEE, London, pp 98–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadia Ikhmayies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ikhmayies, S., Çiftci, Y.Ö. (2019). The Influence of Phosphorus Dopant on the Structural and Mechanical Properties of Silicon. In: Wang, T., et al. Energy Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06209-5_21

Download citation

Publish with us

Policies and ethics