Skip to main content

Determination of Limiting Current Density, Plateau Length, and Ohmic Resistance of a Heterogeneous Membrane for the Treatment of Industrial Wastewaters with Copper Ions in Acid Media

  • Conference paper
  • First Online:
  • 1467 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In the last years, the electrodialysis process has been considered as an alternative to the chemical precipitation for the treatment of wastewaters from electroplating industries due to some limitations involved in the precipitation, as the sludge formation. For the success of the electrodialysis , some membranes properties have to be evaluated and the chronopotentiometry technique can be used. Hence, the present paper aimed at using chronopotentiometry for determining the limiting current density, plateau length, and ohmic resistance of the cationic heterogeneous HDX100 membrane by constructing current–voltage curves. The synthesized solution of the effluent from the electroplating industry evaluated was prepared with copper sulfate and sulfuric acid (2 g Cu2+/L and pH 2). The chronopotentiometric curves were also evaluated for the study of the precipitate formation. According to the results, typical curves of monopolar membranes were obtained and the properties could be effectively determined by chronopotentiometry .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Musa AY, Slaiman QJM, Kadhum AAH, Takriff MS (2008) Effects of agitation, current density and cyanide concentration on Cu-Zn Alloy electroplating. Eur J Sci Res 22:517–524

    Google Scholar 

  2. Dini JW, Snyder DD (2011) Electrodeposition of copper. In: Modern electroplating. Wiley, Hoboken, USA, pp 33–78. https://doi.org/10.1002/9780470602638.ch2

    Chapter  Google Scholar 

  3. Barros KS, Scarazzato T, Espinosa DCR (2018) Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Sep Purif Technol 193. https://doi.org/10.1016/j.seppur.2017.10.067

    Article  CAS  Google Scholar 

  4. Survila A, Mockus Z, Kanapeckaite S, Stalnionis G (2013) Kinetics of zinc and copper reduction in gluconate-sulfate solutions. Electrochim Acta 94:307–313. https://doi.org/10.1016/j.electacta.2013.01.157

    Article  CAS  Google Scholar 

  5. Ogutveren UB, Koparal S, Ozel E (2008) Electrodialysis for the removal of copper ions from wastewater. J Environ Sci Health Part A-Environ Sci Eng 32:749–761. https://doi.org/10.1080/10934529709376574

    Google Scholar 

  6. Chang JH, Ellis AV, Tung CH, Huang WC (2010) Copper cation transport and scaling of ionic exchange membranes using electrodialysis under electroconvection conditions. J Memb Sci 361:56–62. https://doi.org/10.1016/j.memsci.2010.06.012

    Article  CAS  Google Scholar 

  7. Caprarescu S, Purcar V, Vaireanu D-I (2012) Separation of copper ions from synthetically prepared electroplating wastewater at different operating conditions using electrodialysis. Sep Sci Technol 47:2273–2280. https://doi.org/10.1080/01496395.2012.669444

    Article  CAS  Google Scholar 

  8. Ku Y, Jung IL (2001) Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135–142. https://doi.org/10.1016/S0043-1354(00)00098-1

    Article  CAS  Google Scholar 

  9. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  10. Frioui S, Oumeddour R, Lacour S (2017) Highly selective extraction of metal ions from dilute solutions by hybrid electrodialysis technology. Sep Purif Technol 174:264–274. https://doi.org/10.1016/j.seppur.2016.10.028

    Article  CAS  Google Scholar 

  11. Benvenuti T, Krapf RS, Rodrigues MAS, Bernardes AM, Zoppas-Ferreira J (2014) Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Sep Purif Technol 129:106–112. https://doi.org/10.1016/j.seppur.2014.04.002

    Article  CAS  Google Scholar 

  12. Marder L, Ortega Navarro EM, Perez-Herranz V, Bernardes AM, Ferreira JZ (2006) Evaluation of transition metals transport properties through a cation exchange membrane by chronopotentiometry. J Memb Sci 284:267–275. https://doi.org/10.1016/j.memsci.2006.07.039

    Article  CAS  Google Scholar 

  13. Pismenskaia N, Sistat P, Huguet P, Nikonenko V, Pourcelly G (2004) Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. J Memb Sci 228:65–76. https://doi.org/10.1016/j.memsci.2003.09.012

    Article  CAS  Google Scholar 

  14. Barros KS, Scarazzato T, Espinosa DCR (2018) Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Sep Purif Technol 193:184–192. https://doi.org/10.1016/j.seppur.2017.10.067

    Article  CAS  Google Scholar 

  15. Peng C, Liu Y, Bi J, Xu H, Ahmed AS (2011) Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis. J Hazard Mater 189:814–820. https://doi.org/10.1016/j.jhazmat.2011.03.034

    Article  CAS  Google Scholar 

  16. Caprarescu S, Corobea MC, Purcar V, Spataru CI, Ianchis R, Vasilievici G, Vuluga Z (2015) San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis. J Environ Sci (China) 35:27–37. https://doi.org/10.1016/j.jes.2015.02.005

    Article  CAS  Google Scholar 

  17. Alebrahim MF, Khattab IA, Sharif AO (2015) Electrodeposition of copper from a copper sulfate solution using a packed-bed continuous-recirculation flow reactor at high applied electric current. Egypt J Pet 24:325–331. https://doi.org/10.1016/j.ejpe.2015.07.009

    Article  Google Scholar 

  18. Alcaraz A, Wilhelm FG, Wessling M, Ramı́rez P (2001) The role of the salt electrolyte on the electrical conductive properties of a polymeric bipolar membrane. J Electroanal Chem 513:36–44. https://doi.org/10.1016/s0022-0728(01)00597-6

    Article  CAS  Google Scholar 

  19. Bittencourt SD, Marder L, Benvenuti T, Ferreira JZ, Bernardes AM (2017) Analysis of different current density conditions in the electrodialysis of zinc electroplating process solution. Sep Sci Technol 52:2079–2089. https://doi.org/10.1080/01496395.2017.1310896

    Article  CAS  Google Scholar 

  20. Puigdomench I (2001) Hydra Medusa—make equilibrium diagrams using sophisticated algorithms

    Google Scholar 

  21. Nightingale ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387. https://doi.org/10.1021/j150579a011

    Article  CAS  Google Scholar 

  22. García-Gabaldón M, Pérez-Herranz V, Ortega E (2011) Evaluation of two ion-exchange membranes for the transport of tin in the presence of hydrochloric acid. J Memb Sci 371:65–74. https://doi.org/10.1016/j.memsci.2011.01.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by funding agencies CNPq (Process 141346/2016-7) and FAPESP (Process 2012/51871-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barros, K.S., Tenório, J.A.S., Pérez-Herranz, V., Espinosa, D.C.R. (2019). Determination of Limiting Current Density, Plateau Length, and Ohmic Resistance of a Heterogeneous Membrane for the Treatment of Industrial Wastewaters with Copper Ions in Acid Media. In: Wang, T., et al. Energy Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06209-5_16

Download citation

Publish with us

Policies and ethics