Skip to main content

Goal-oriented A Posteriori Error Estimates in Finite Hyperelasticity

  • Chapter
  • First Online:
Error Estimates for Advanced Galerkin Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 88))

  • 456 Accesses

Abstract

Coming full circle in this chapter, expansions of the goal-oriented error estimation procedures presented in the preceding chapter to the finite hyperelasticity problem within both Newtonian and Eshelbian mechanics are derived for compressible and (nearly) incompressible materials. These error estimation procedures represent the most challenging ones presented in this monograph from both theoretical and numerical points of view. As a consequence, attention is focused on the derivation of error approximations rather than upper- or lower-bound error estimates. In the nonlinear case, a natural norm, such as the energy norm does not exist. The estimation of the general error measures introduced in the preceding chapter, on the other hand, does not necessarily rely on norm-based error estimators and thus allows for the derivation of a more versatile approach in a posteriori error estimation that can be employed in this chapter. Throughout this chapter, we confine ourselves to Galerkin mesh-based methods although similar error estimation procedures can also be developed for Galerkin meshfree methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To avoid confusion, the reader is reminded that in this chapter, the notation \(\varvec{\tilde{P}}\) refers to an improved first Piola-Kirchhoff stress solution rather than to the isochoric part of \(\varvec{P}\) introduced in Sect. 2.3.3.

References

  • Bank, R.E.: Hierarchical bases and the finite element method. Acta Numer. 1–43 (1996)

    Article  MathSciNet  Google Scholar 

  • Bank, R.E.: A simple analysis of some a posteriori error estimates. Appl. Numer. Math. 26, 153–164 (1998)

    Article  MathSciNet  Google Scholar 

  • Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30, 921–935 (1993)

    Article  MathSciNet  Google Scholar 

  • Blacker, T., Belytschko, T.: Superconvergent patch recovery with equilibrium and conjoint interpolation enhancements. Int. J. Numer. Meth. Engng. 37, 517–536 (1994)

    Article  Google Scholar 

  • Bonet, J., Huerta, A., Peraire, J.: The efficient computation of bounds for functionals of finite element solutions in large strain elasticity. Comput. Methods Appl. Mech. Engrg. 191, 4807–4826 (2002)

    Article  MathSciNet  Google Scholar 

  • Brink, U., Stein, E.: A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems. Comput. Methods Appl. Mech. Engrg. 161, 77–101 (1998)

    Article  MathSciNet  Google Scholar 

  • Carstensen, C., Funken, S.A.: Averaging technique for FE - a posteriori error control in elasticity. Part I: Conforming FEM. Comput. Methods Appl. Mech. Engrg. 190, 2483–2498 (2001)

    Article  MathSciNet  Google Scholar 

  • Kvamsdal, T., Okstad, K.M.: Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int. J. Numer. Meth. Engng. 42, 443–472 (1998)

    Article  MathSciNet  Google Scholar 

  • Larsson, F., Hansbo, P., Runesson, K.: Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int. J. Numer. Meth. Engng. 55, 879–894 (2002)

    Article  MathSciNet  Google Scholar 

  • RĂ³denas, J.J., Tur, M., Fuenmayor, F.J., Vercher, A.: Improvement of the superconvergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int. J. Numer. Meth. Engng. 70, 705–727 (2007)

    Article  Google Scholar 

  • RĂ¼ter, M., Heintz, P., Larsson, F., Hansbo, P., Runesson, K., Stein, E.: Strategies for goal-oriented a posteriori error estimation in elastic fracture mechanics. In: Lund, E., Olhoff, N., Stegmann, J. (eds.) Proceedings of the 15th Nordic Seminar on Computational Mechanics, NSCM 15, Aalborg, Denmark, pp. 43–46 (2002)

    Google Scholar 

  • RĂ¼ter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Engrg. 190, 519–541 (2000)

    Article  MathSciNet  Google Scholar 

  • RĂ¼ter, M., Stein, E.: On the duality of global finite element discretization error-control in small strain Newtonian and Eshelbian mechanics. Technische Mechanik 23, 265–282 (2003)

    Google Scholar 

  • RĂ¼ter, M., Stein, E.: Adaptive finite element analysis of crack propagation in elastic fracture mechanics based on averaging techniques. Comp. Mat. Sci. 31, 247–257 (2004)

    Article  Google Scholar 

  • RĂ¼ter, M., Stein, E.: On the duality of finite element discretization error control in computational Newtonian and Eshelbian mechanics. Comput. Mech. 39, 609–630 (2007)

    Article  MathSciNet  Google Scholar 

  • Stein, E., RĂ¼ter, M.: Finite element methods for elasticity with error-controlled discretization and model adaptivity. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2nd edn., pp. 5–100. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • Whiteley, J.P., Tavener, S.J.: Error estimation and adaptivity for incompressible hyperelasticity. Int. J. Numer. Meth. Engng. 99, 313–332 (2014)

    Article  MathSciNet  Google Scholar 

  • Wiberg, N.E., Abdulwahab, F.: Patch recovery based on superconvergent derivatives and equilibrium. Int. J. Numer. Meth. Engng. 36, 2703–2724 (1993)

    Article  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Meth. Engng. 24, 337–357 (1987)

    Article  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Meth. Engng. 33, 1331–1364 (1992a)

    Article  MathSciNet  Google Scholar 

  • Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int. J. Numer. Meth. Engng. 33, 1365–1382 (1992b)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Olavi RĂ¼ter .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

RĂ¼ter, M.O. (2019). Goal-oriented A Posteriori Error Estimates in Finite Hyperelasticity. In: Error Estimates for Advanced Galerkin Methods. Lecture Notes in Applied and Computational Mechanics, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-06173-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06173-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06172-2

  • Online ISBN: 978-3-030-06173-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics