Skip to main content

Newtonian and Eshelbian Mechanics

  • Chapter
  • First Online:
Book cover Error Estimates for Advanced Galerkin Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 88))

  • 481 Accesses

Abstract

The objective of this chapter is to present an introduction to the theory of continuum mechanics of elastic structures. Classical continuum mechanics deals with finding the spatial configuration of an elastic body that is subjected to external forces. This forward problem is attributed to Sir Isaac Newton and therefore termed Newtonian mechanics. In the associated inverse problem, which is attributed to John Douglas Eshelby and therefore termed Eshelbian mechanics, we are concerned with the forces applied to the spatial configuration. In Newtonian mechanics, the applied forces are of a physical nature, and as a result, the associated stress that arises in the spatial configuration of the elastic body is well known as the (physical) Cauchy stress. In Eshelbian mechanics, on the other hand, the deformed elastic body is subjected to so-called material forces, and the resulting stress in the initial configuration (of the forward problem) is termed the (material) Eshelby stress. In this chapter, the stress tensors that naturally appear in both Newtonian and Eshelbian mechanics are systematically derived for both compressible and (nearly) incompressible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that it is conventional practice to denote the divergence operator equivalently as \(\nabla _{x} \cdot (\cdot )\). However, this is not always possible, as we shall see in Sect. 2.2.4. Moreover, this notation is not consistent with the (spatial) gradient operator \((\cdot ) \otimes \nabla _{x}\).

  2. 2.

    Note that it is customary in the literature to express the material tractions \({\varvec{T}}_{\text {mat}}\) by \({\varvec{\Sigma }}^{\sharp } \cdot {\varvec{N}}\), according to the stress theorem (2.24).

  3. 3.

    To be consistent with the tensor gradient operators \((\cdot ) \otimes \nabla _{x}\) and \((\cdot ) \otimes \nabla _{X}\), we use the notations \((\cdot ) \nabla _{x}\) and \((\cdot ) \nabla _{X}\) in the vector case.

  4. 4.

    Note that the material part \(\mathbb {A}_{\text {mat}}\) is not related to material forces in Eshelbian mechanics.

References

  • Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  MATH  Google Scholar 

  • Bennett, K.C., Regueiro, R.A., Borja, R.I.: Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change. Int. J. Plast. 77, 214–245 (2016)

    Article  Google Scholar 

  • Bertram, A.: Elasticity and Plasticity of Large Deformations, 3rd edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  • Blatz, P.J., Ko, W.L.: Application of finite elasticity to the deformations of rubbery materials. Trans. Soc. Rheology 6, 223–251 (1962)

    Article  Google Scholar 

  • Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Brink, U., Stein, E.: On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput. Mech. 19, 105–119 (1996)

    Article  MATH  Google Scholar 

  • Cescotto, S., Fonder, G.: A finite element approach for large strains of nearly incompressible rubber-like materials. Int. J. Solids Structures 15, 589–605 (1979)

    Article  MATH  Google Scholar 

  • Chadwick, P.: Applications of an energy-momentum tensor in non-linear elastostatics. J. Elasticity 5, 249–258 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet P.G.: Mathematical Elasticity, Volume 1: Three-Dimensional Elasticity. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1988)

    Google Scholar 

  • DeHoff, R.T.: Thermodynamics in Materials Science, 2nd edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  • Dimitrienko, Y.I.: Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  • Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115 (1956)

    Article  MathSciNet  Google Scholar 

  • Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. Roy. Soc. London Ser. A 244, 87–112 (1951)

    Google Scholar 

  • Eshelby, J.D.: The elastic energy-momentum tensor. J. Elasticity 5, 321–335 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday. Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  • Govindjee, S., Mihalic, P.H.: Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Engrg. 136, 47–57 (1996)

    Article  MATH  Google Scholar 

  • Govindjee, S., Mihalic, P.H.: Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Meth. Engng. 43, 821–838 (1998)

    Article  MATH  Google Scholar 

  • Green, A.E., Zerna, W.: Theoretical Elasticity, 2nd edn. Oxford University Press, London (1968)

    MATH  Google Scholar 

  • Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  • Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (2000)

    MATH  Google Scholar 

  • Häggblad, B., Sundberg, J.A.: Large strain solutions of rubber components. Comput. & Struct. 17, 835–843 (1983)

    Article  Google Scholar 

  • Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics—A Continuum Approach for Engineering. John Wiley & Sons, Chichester (2000)

    Google Scholar 

  • Holzapfel, G.A., Gasser, T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Engrg. 190, 4379–4403 (2001)

    Article  Google Scholar 

  • Irgens, F.: Continuum Mechanics. Springer, Berlin (2008)

    Google Scholar 

  • Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Engrg. 185, 225–243 (2000)

    Article  MATH  Google Scholar 

  • Kienzler, R., Herrmann, G.: Mechanics in Material Space—with Applications to Defect and Fracture Mechanics. Springer, Berlin (2000)

    Google Scholar 

  • Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. III, pp. 465–622. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1994)

    Google Scholar 

  • Lu, J., Papadopoulos, P.: Referential Doyle-Ericksen formulae for the Eshelby tensor in non-linear elasticity. Z. Angew. Math. Phys. 54, 964–976 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)

    Book  Google Scholar 

  • Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  • Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  • Martins, J.A.C., Pires, E.B., Salvador, R., Dinis, P.B.: A numerical model of passive and active behaviour of skeletal muscles. Comput. Methods Appl. Mech. Engrg. 151, 419–433 (1998)

    Article  MATH  Google Scholar 

  • Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  • Maugin, G.A.: Material forces: Concepts and applications. Appl. Mech. Rev. 48, 213–245 (1995)

    Article  Google Scholar 

  • Maugin, G.A.: On the universality of the thermomechanics of forces driving singular sets. Arch. Appl. Mech. 70, 31–45 (2000)

    Article  MATH  Google Scholar 

  • Maugin, G.A.: Non-Classical Continuum Mechanics. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

  • Mooney, M.: A theory of large elastic deformations. J. Appl. Phys. 11, 582–592 (1940)

    Article  MATH  Google Scholar 

  • Ogden, R.W.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  • Penn, R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheology 14, 509–517 (1970)

    Article  Google Scholar 

  • Reese, S., Raible, T., Wriggers, P.: Finite element modelling of orthotropic material behaviour in pneumatic membranes. Int. J. Solids Structures 38, 9525–9544 (2001)

    Article  MATH  Google Scholar 

  • Rivlin, R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. Roy. Soc. London, Ser. A 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. Roy. Soc. London, Ser. A 243, 251–288 (1950)

    Article  MATH  Google Scholar 

  • Rüter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Engrg. 190, 519–541 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Structures 40, 401–445 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Shield, R.T.: Inverse deformation results in finite elasticity. Z. Angew. Math. Phys. 18, 490–500 (1967)

    Article  MATH  Google Scholar 

  • Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Engrg. 51, 177–208 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Spencer, A.J.M.: The formulation of constitutive equation for anisotropic solids. In: Boehler, J.P. (ed.) Mechanical Behavior of Anisotropic Solids, pp. 2–26. Martinus Nijhoff Publishers, The Hague (1979)

    Google Scholar 

  • Spencer, A.J.M.: Constitutive theory for strongly anisotropic solids. In: Spencer, A.J.M. (ed.) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp. 1–32. Springer, Wien (1984)

    Chapter  Google Scholar 

  • Stein, E., Barthold, F.-J.: Elastizitätstheorie. In: Mehlhorn, G. (ed.) Der Ingenieurbau, pp. 165–434. Ernst & Sohn, Berlin (1997)

    Google Scholar 

  • Stein, E., Rüter, M.: Finite element methods for elasticity with error-controlled discretization and model adaptivity. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2nd edn., pp. 5–100. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • Steinmann, P.: Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int. J. Solids Structures 37, 7371–7391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Steinmann, P.: Geometrical Foundations of Continuum Mechanics—An Application to First- and Second-Order Elasticity and Elasto-Plasticity. Springer, Berlin (2015)

    Google Scholar 

  • Sussman, T., Bathe, K.-J.: A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. & Struct. 26, 357–409 (1987)

    Article  MATH  Google Scholar 

  • Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  • Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Chapter  MATH  Google Scholar 

  • Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Engrg. 135, 107–128 (1996)

    Article  MATH  Google Scholar 

  • Wilmański, K.: Thermodynamics of Continua. Springer, Berlin (1998)

    MATH  Google Scholar 

  • Yeoh, O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63, 792–805 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Olavi Rüter .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rüter, M.O. (2019). Newtonian and Eshelbian Mechanics. In: Error Estimates for Advanced Galerkin Methods. Lecture Notes in Applied and Computational Mechanics, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-06173-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06173-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06172-2

  • Online ISBN: 978-3-030-06173-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics