Skip to main content

Abstract

The RDF data model forms a cornerstone of the Semantic Web technology stack. Although there have been different proposals for RDF serialization syntaxes, the underlying simple data model enables great flexibility which allows it to be successfully employed in many different scenarios and to form the basis on which other technologies are developed. In order to apply an RDF-based approach in practice it is necessary to communicate the structure of the data that is being stored or represented. Data quality is of paramount importance for the acceptance of RDF as a data representation language and it must be enabled by the use of tools that can check if some data conforms to some specific structure. There have been several recent proposals for RDF validation languages like ShEx and SHACL. In this chapter, we describe both proposals and enumerate some challenges and trends that we foresee with regards to RDF validation. We devote more space to what we consider one of the main challenges, which is to compare ShEx and SHACL and to understand their underlying foundations. To that end, we propose an intermediate language and show how ShEx and SHACL can be converted to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is also a special kind of literals that have an associated language tag. We omit them in this chapter to simplify the presentation.

  2. 2.

    RDFShape is deployed at: http://rdfshape.weso.es. The following link can be used to show that graph or dynamically visualize other RDF graphs: https://goo.gl/jgMPM4.

  3. 3.

    An exception is our Shaclex library [24] which also provides information about conformant nodes.

  4. 4.

    http://plantuml.com.

  5. 5.

    https://github.com/ericprud/uml-model.

  6. 6.

    https://www.topquadrant.com/.

  7. 7.

    https://www.eclipse.org/lyo/.

References

  1. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification (1999). https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

  2. Brickley, D., Guha, R.V., Layman, A.: Resource description framework (RDF) schemas (1998). https://www.w3.org/TR/1998/WD-rdf-schema-19980409/

  3. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup Language (XML) 1.0, 5th ed. W3C Recommendation (2008)

    Google Scholar 

  4. Gao, S., Sperberg-McQueen, C.M., Thompson, H.S.: W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Recommendation (2012)

    Google Scholar 

  5. Van der Vlist, E.: Relax, NG.: A Simpler Schema Language for XML. O’Reilly, Beijing (2004)

    Google Scholar 

  6. McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommendation (2004)

    Google Scholar 

  7. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query languages. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) The Semantic Web—ISWC 2004, pp. 502–517. Springer, Berlin, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation (2008)

    Google Scholar 

  9. Berners-Lee, T.: Linked-data design issues. W3C design issue document, June 2006. http://www.w3.org/DesignIssue/LinkedData.html

  10. Bizer, C., Heath, T., Berners-Lee, T.: Linked data—the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  11. Labra Gayo, J.E., Prud’hommeaux, E., Solbrig, H.R., Rodríguez, J.M.Á.: Validating and describing linked data portals using RDF shape expressions. In: Proceedings of the 1st Workshop on Linked Data Quality Co-located with 10th International Conference on Semantic Systems, LDQ@SEMANTiCS 2014. CEUR Workshop Proceedings, vol. 1215 (2014)

    Google Scholar 

  12. Hogan, A., Arenas, M., Mallea, A., Polleres, A.: Everything you always wanted to know about blank nodes. Web Semant. 27(C), 42–69 (2014)

    Google Scholar 

  13. Prud’hommeaux, E., Carothers, G.: RDF 1.1 turtle: Terse RDF triple language (2014). http://www.w3.org/TR/turtle/

  14. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation (2013)

    Google Scholar 

  15. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property paths. In: The Semantic Web—ISWC 2015, pp. 3–18. Springer International Publishing (2015)

    Google Scholar 

  16. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF validation and transformation language. In: Proceedings of the 10th International Conference on Semantic Systems, SEMANTICS 2014, pp. 32–40. ACM (2014)

    Google Scholar 

  17. Prud’hommeaux, E., Boneva, I., Labra Gayo, J.E., Kellog, G.: Shape Expressions Language 2.0 (2017). https://shexspec.github.io/spec/

  18. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.: Semantics and validation of shapes schemas for RDF. In: International Semantic Web Conference (2017)

    Google Scholar 

  19. Prud’hommeaux, E., Baker, T.: ShapeMap Structure and Language, July 2017. https://shexspec.github.io/ShapeMap/

  20. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C Proposed Recommendation, June 2017

    Google Scholar 

  21. Knublauch, H.: SPIN—Modeling Vocabulary (2011). http://www.w3.org/Submission/spin-modeling/

  22. Ryman, A.G., Hors, A.L., Speicher, S.: OSLC resource shape: a language for defining constraints on linked data. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) Linked Data on the Web, CEUR Workshop Proceedings, CEUR-WS.org, vol. 996 (2013)

    Google Scholar 

  23. Labra Gayo, J.E., Prud’hommeaux, E., Boneva, I., Kontokostas, D.: Validating RDF Data. Volume 7 of Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan and Claypool Publishers LLC (2017)

    Google Scholar 

  24. Labra Gayo, J.E., Shaclex: Scala Implementation of ShEx and SHACL (2018). https://doi.org/10.5281/zenodo.1400247 http://labra.github.io/shaclex

  25. Staworko, S., Boneva, I., Labra Gayo, J.E., Hym, S., Prud’hommeaux, E.G., Solbrig, H.R.: Complexity and expressiveness of ShEx for RDF. In: 18th International Conference on Database Theory, ICDT 2015. LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, vol. 31, pp. 195–211 (2015)

    Google Scholar 

  26. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL. In: Proceedings of the 17th International Semantic Web Conference, October 2018

    Google Scholar 

  27. Boneva, I.: Comparative expressiveness of ShEx and SHACL. Early working draft (2016)

    Google Scholar 

  28. Cabalar, P., Pearce, D., Valverde, A.: Stable reasoning. J. Appl. Non Class. Log 27(3–4), 238–254 (2017)

    Article  MathSciNet  Google Scholar 

  29. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL (extended version). Technical Report KRDB18-01, KRDB Research Centre (2018)

    Google Scholar 

  30. Knublauch, H., Allemang, D., Steyskal, S.: SHACL advanced features 1.1. W3C Draft Community Group Report (2018)

    Google Scholar 

  31. Deursen, D.V., Poppe, C., Martens, G., Mannens, E., de Walle, R.V.: XML to RDF conversion: a generic approach. In: Nesi, P., Ng, K., Delgado, J. (eds.) 2008 International Conference on Automated solutions for Cross Media Content and Multi-channel Distribution, Florence, pp. 138–144. IEEE (2008). https://doi.org/10.1109/axmedis.2008.17

  32. Battle, S.: Gloze: XML to RDF and back again. In: Proceedings of the 1st Jena User Conference. HP Labs, Bristol (2006)

    Google Scholar 

  33. Thuy, P.T.T., Lee, Y.K., Lee, S., Jeong, B.S.: Transforming valid XML documents into RDF via RDF schema. In: Abraham, A., Han, S.Y. (eds.) Third International Conference on Next Generation Web Services Practices, Seoul, pp. 35–40. IEEE (2007). https://doi.org/10.1109/nwesp.2007.23

  34. Thuy, P.T.T., Lee, Y.K., Lee, S., Jeong, B.S.: Exploiting XML schema for interpreting XML documents as RDF. In: van der Aalst, W., Pu, C., Bertino, E., Feig, E., Hung, P.C.K. (eds.) 2008 IEEE International Conference on Services Computing (SCC’08), Honolulu, vol. 2, pp. 555–558. IEEE (2008). https://doi.org/10.1109/scc.2008.93

  35. Breitling, F.: A standard transformation from XML to RDF via XSLT. Astron. Nachr. 330(7), 755–760 (2009). https://doi.org/10.1002/asna.200811233

    Article  Google Scholar 

  36. Sperberg-McQueen, C.M., Miller, E.: On mapping from colloquial XML to RDF using XSLT. In: Proceedings of Extreme Markup Languages® 2004, Montreal (2004). http://conferences.idealliance.org/extreme/html/2004/Sperberg-McQueen01/EML2004Sperberg-McQueen01.html

  37. Berrueta, D., Labra Gayo, J.E., Herman, I.: XSLT + SPARQL: scripting the semantic web with SPARQL embedded into XSLT stylesheets. In: Bizer, C., Auer, S., Aastrand, G., Tom Heath, G. (eds.) 4th Workshop on Scripting for the Semantic Web, Tenerife, CEUR-WS, vol. 368 (2008)

    Google Scholar 

  38. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF and XML with XSPARQL. J. Data Semant. 1(3), 147–185 (2012). https://doi.org/10.1007/s13740-012-0008-7

    Article  Google Scholar 

  39. Ermilov, I., Auer, S., Stadler, C., CSV2RDF: User-driven CSV to RDF mass conversion framework. In: Proceedings of the ISEM. Graz, Austria, vol. 13, pp. 04–06 (2013)

    Google Scholar 

  40. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recommendation (2012)

    Google Scholar 

  41. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: LDOW, Seoul, Korea (2014)

    Google Scholar 

  42. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked data generation at your fingertips! In: Proceedings of the 15th ESWC: Posters and Demos, Heraklion, Greece (2018)

    Google Scholar 

  43. Garcia-Gonzalez, H., Labra-Gayo, J.E., XMLSchema2ShEx: Converting XML Validation to RDF Validation. Semantic Web (2018). http://www.semantic-web-journal.net/content/xmlschema2shex-converting-xml-validation-rdf-validation-1

  44. Pham, M.D., Boncz, P.: Exploiting emergent schemas to make RDF systems more efficient. In: International Semantic Web Conference, pp. 463–479. Springer (2016)

    Google Scholar 

  45. Kim, G.H., Ko, S.K., Han, Y.S.: Inferring a relax ng schema from xml documents. In: International Conference on Language and Automata Theory and Applications, pp. 400–411. Springer (2016)

    Google Scholar 

  46. Klempa, M., Kozak, M., Mikula, M., Smetana, R., Starka, J., Švirec, M., Vitásek, M., Nečasky, M., Mlynková, I.H.: Jinfer: a framework for xml schema inference. Comput. J. 58(1), 134–156 (2015)

    Article  Google Scholar 

  47. Rietveld, L., Beek, W., Hoekstra, R., Schlobach, S.: Meta-data for a lot of lod. Semant. Web 8(6), 1067–1080 (2017)

    Article  Google Scholar 

  48. Hasnain, A., Mehmood, Q., Zainab, S.S., Hogan, A.: Sportal: profiling the content of public sparql endpoints. Int. J. Semant. Web Inf. Syst. (IJSWIS) 12(3), 134–163 (2016)

    Article  Google Scholar 

  49. Mihindukulasooriya, N., Poveda-Villalón, M., García-Castro, R., Gómez-Pérez, A.: Loupe-an online tool for inspecting datasets in the linked data cloud. In: International Semantic Web Conference (Posters and Demos) (2015)

    Google Scholar 

  50. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets. In: LDOW (2009)

    Google Scholar 

  51. González, L., Hogan, A.: Modelling dynamics in semantic web knowledge graphs with formal concept analysis. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1175–1184 (2018)

    Google Scholar 

  52. Čebirić, Š., Goasdoué, F., Manolescu, I.: Query-oriented summarization of rdf graphs. Proc. VLDB Endow. 8(12), 2012–2015 (2015)

    Article  Google Scholar 

  53. Fernández-Álvarez, D., García-González, H., Frey, J., Hellmann, S., Labra Gayo, J.E.: Inference of latent shape expressions associated to dbpedia ontology. In: International Semantic Web Conference. Springer (2018)

    Google Scholar 

  54. Melo, A., Paulheim, H.: Learning SHACL constraints for validation of relation assertions in knowledge graphs. In: Extended Semantic Web Conference ESWC (2018)

    Google Scholar 

  55. Maali, F., Erickson, J. (eds).: Data Catalog Vocabulary (DCAT). W3C Recommendation (2014)

    Google Scholar 

  56. Reynolds, D.: The Organization Ontology. W3C Recommendation (2014)

    Google Scholar 

  57. Cyganiak, R., Reynolds, D.: The RDF Data Cube Vocabulary. W3C Recommendation (2014)

    Google Scholar 

  58. Labra Gayo, J.E.: RDFShape: RDF Playground (2018). https://doi.org/10.5281/zenodo.1412128

  59. Ekaputra, F.J., Lin, X.: Shacl4p: Shacl constraints validation within protÃľgÃľ ontology editor. In: 2016 International Conference on Data and Software Engineering (ICoDSE), pp. 1–6 (2016)

    Google Scholar 

  60. Gray, A.J.G.: Validata: a tool for testing profile conformance. In: Smart Descriptions and Smarter Vocabularies (SDSVoc), Amsterdam, The Netherlands (2016)

    Google Scholar 

  61. Boston, B., Sampson, A., Grossman, D., Ceze, L.: Probability type inference for flexible approximate programming. SIGPLAN Not. 50(10), 470–487 (2015)

    Article  Google Scholar 

  62. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL: a continuous query language for RDF data streams. Int. J. Semant. Comput. 04(01), 3–25 (2010)

    Article  Google Scholar 

  63. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: The Semantic Web—ISWC 2011, pp. 370–388. Springer, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  64. Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)

    Article  Google Scholar 

  65. Calbimonte, J.-P. (ed.): RDF Stream Processing: Requirements and Design Principles. W3C Draft Community Group Report (2016)

    Google Scholar 

  66. Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic reasoning over streams. Technical Report INFSYS RR-1843-17-03, Institute of Information Systems, TU Vienna (2017)

    Google Scholar 

  67. Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental asp-based stream reasoning. TPLP 17(5–6), 744–763 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Spanish Ministry of Economy and Competitiveness (Society challenges: TIN2017-88877-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Emilio Labra-Gayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Labra-Gayo, J.E., García-González, H., Fernández-Alvarez, D., Prud’hommeaux, E. (2019). Challenges in RDF Validation. In: Alor-Hernández, G., Sánchez-Cervantes, J., Rodríguez-González, A., Valencia-García, R. (eds) Current Trends in Semantic Web Technologies: Theory and Practice. Studies in Computational Intelligence, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-030-06149-4_6

Download citation

Publish with us

Policies and ethics