Skip to main content

In Situ Structural Variations of Individual Particles of an Al2O3-Supported Cu/Fe Spinel Oxygen Carrier During High-Temperature Oxidation and Reduction

  • Conference paper
  • First Online:
Advanced Real Time Imaging II

Abstract

Physical and chemical degradation of the oxygen-carrier materials during high-temperature redox exposures may affect the overall efficiency of the chemical looping process. Therefore, studying real-time physical and chemical changes in these materials when exposed to repeated redox cycles is essential for further development of chemical looping technology. In this work, the National Energy Technology Laboratory’s Al2O3-supported Cu/Fe spinel oxygen carrier, in the form of a CuO · Fe2O3 solid solution, was examined in situ during 3-h exposures to either oxidizing or reducing environments at 800 °C using a controlled atmosphere heating chamber in conjunction with a confocal scanning laser microscope. A compilation of the physical changes of individual particles using a controlled atmosphere confocal microscope and the microstructural/chemical changes documented using a scanning electron microscope will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metz B, Davidson OR, Bosch PR, Dave RL, Meyer A (eds) (2007) Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change, IPCC, 2007. Cambridge University Press, Cambridge

    Google Scholar 

  2. Hossain MM, de Lasa HI (2008) Chemical-looping combustions (CLC) for inherent CO2 separations—a review. Chem Eng Sci 63:4433–4451

    Article  CAS  Google Scholar 

  3. Nealley WHH, Nakano A, Nakano J, Bennett JP (2018) Structural changes and material transport in Al2O3-supported CuFe2O4 particles in a simulated chemical looping combustion environment. JOM 70(7):1232–1238

    Article  CAS  Google Scholar 

  4. Lyngfelt A (2011) Oxygen carriers for chemical looping combustion—4000 h of operational experience. Oil Gas Sci Tech 66:161–172

    Article  CAS  Google Scholar 

  5. Wang X, Chen Z, Hu M, Tian Y, Jin X, Ma S, Xu T, Hu Z, Liu S, Guo D, Xiao B (2017) Chemical looping combustion of biomass using metal ferrites as oxygen carriers. Chem Eng J 312:252–262

    Article  CAS  Google Scholar 

  6. Voitic G, Hacker V (2016) Recent advancements in chemical looping water splitting for the production of hydrogen. RSC Adv 6:9867–9896

    Google Scholar 

  7. Hu W, Donat F, Scott SA, Dennis JS (2016) The interaction between CuO and Al2O3 and the reactivity of copper aluminates below 1000 °C and their implication on the use of the Cu–Al–O system for oxygen storage and production. RSC Adv 6:113016–113024

    Article  CAS  Google Scholar 

  8. Liu W, Ismail M, Dunstan MT, Hu W, Zhang Z, Fennell PS, Scott SA, Dennis JS (2015) Inhibiting the interaction between FeO and Al2O3 during chemical looping production of hydrogen. RSC Adv 5:1759–1771

    Article  Google Scholar 

  9. Bayham S, Straub D, Weber J (2017) Operation of the NETL chemical looping reactor with natural gas and a novel Copper-Iron material. NETL-PUB-20912; NETL technical report series; U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV

    Google Scholar 

  10. Siriwardane R, Riley J, Bayham S, Straub D, Tian H, Weber J, Richards G (2018) 50-kWth methane/air chemical looping combustions tests with commercially prepared CuO–Fe2O3-alumina oxygen carrier with two different techniques. App Energy 213:92–99

    Article  CAS  Google Scholar 

  11. Wang B, Yan R, Zhao H, Zheng Y, Liu Z, Zheng C (2011) Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier. Energy Fuels 25:3344–3354

    Article  CAS  Google Scholar 

  12. Wang B, Ma Q, Wang W, Zhang C, Mei D, Zhao H, Zheng C (2017) Effect of reaction temperature on the chemical looping combustions of coal with CuFe2O4 combined oxygen carrier. Energy Fuels 31:5233–5245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in support of the US Department of Energy’s Fossil Energy Advanced Combustion Program. The research was executed through NETL Research and Innovation Center’s Advanced Combustion effort. Research performed by AECOM Staff was conducted under the RES contract DE-FE-0004000. The authors wish to thank Mr. Matt Fortner for metallography.

Figure 1 reprinted with permission from Nealley et al.: Springer, JOM, Structural changes and material transport in Al2O3-supported Cu/Fe spinel particles in a simulated chemical looping combustion environment, Nealley WHH, Nakano A, Nakano J, Bennett JP, Copyright (2018).

The authors declare that they have no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Harrison Nealley .

Editor information

Editors and Affiliations

Ethics declarations

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nealley, W.H.H., Nakano, A., Nakano, J., Bennett, J.P. (2019). In Situ Structural Variations of Individual Particles of an Al2O3-Supported Cu/Fe Spinel Oxygen Carrier During High-Temperature Oxidation and Reduction. In: Nakano, J., et al. Advanced Real Time Imaging II. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06143-2_3

Download citation

Publish with us

Policies and ethics