Skip to main content

Roots of Complexity in the Self-referential Genetic Code

  • Chapter
  • First Online:
Book cover Emergence and Modularity in Life Sciences
  • 604 Accesses

Abstract

The genetic code is the correspondence between ‘letter’ units that cells utilize for translation: triplets of bases in the producers (genes) and amino acids in the products (proteins). The self-referential model indicates that the codes resulted from proto-tRNA dimer-directed protein synthesis. The dimerized proto-tRNAs became codes when the peptides they produced bound back to them and stabilized the correspondence between the units and the protein production system. Anticodons are representative sites of the initial binding oligomers that guided the complementariness at dimerization. The process of producing stabilized associations is a ‘dynamic, epigenetic kind of memory’. The associated system is a module for the construction of polymers—genes, in the realm of ‘memories in strings.’ Memories guarantee stability while plasticity refers to the dynamics, which are the two main and interdependent characters of the living. Further stabilization and partial autonomy come from diversity in proteins at construction of structures and functions for the metabolic flow network. The metabolic system remains dependent on the environment, in a tense relationship with the degradation it provokes. A necessary component of biological complexity is the plasticity in behaviors, which mediates the diversity, adaptations and open-ended evolution. It is constitutive to protein structures and functions. Plastic behaviors are enhanced through the network organization of the system. Interactions that build networks are dependent on the wide range adhesiveness and binding sites of proteins. The model indicates that networks of nucleoprotein interactions are superposed on those of anticodon dimers, while all components are polymers with variable sequences. The complex behaviors of the resulting multi-synthetase complexes are now minimally rationalized.

Graphical Abstract

(Left, bottom) The encoding process A module is a simple network of tRNA pairs. The first module encodes the anticodon pairs (1) 5′GGG:YCC3′ and (3) GGA:YCU. Complex are the many cycles of evolutionary adjustments between the sequences of the synthetases and of the tRNAs (Right, top) The ribonucleoprotein network in the multi-synthetase complex of mammals There are nine enzymes [highlighted pink] and three auxiliary proteins [numbered]. Interactions via anticodon pairs are in straight lines, via protein binding in hand-drawn curved lines. The latter are more abundant upon the subnetworks that are less connected through the tRNA pairs and that join central A:U triplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balatti V, Nigita G, Veneziano D, Drusco A, Stein GS, Messier TL, Farina NH, Lian JB, Tomasello L, Liu CG, Palamarchuk A, Hart JR, Bell C, Carosi M, Pescarmona E, Perracchio L, Diodoro M, Russo A, Antenucci A, Visca P, Ciardi A, Harris CC, Vogt PK, Pekarsky Y, Croce CM (2017) tsRNA signatures in cancer. PNAS 114(30):8071–8076. www.pnas.org/cgi/doi/10.1073/pnas.1706908114

    Article  CAS  Google Scholar 

  • Cho HY, Maeng SJ, Cho HJ, Choi YS, Chung JM, Lee S, Kim HK, Kim JH, Eom CY, Kim YG, Guo M, Jung HS, Kang BS, Kim S (2015) Assembly of multi-tRNA synthetase complex via heterotetrameric glutathione transferase-homology domains. J Biol Chem 290:29313–29328. https://doi.org/10.1074/jbc.M115.690867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colussi TM, Constantino DA, Hammond JA, Ruehle GM, Nix JC, Kieft JS (2014) The structural basis of tRNA mimicry and conformational plasticity by a viral RNA. Nature 511:366–369

    Article  CAS  Google Scholar 

  • Diss G, Arsenault IG, Coté AMD, Vignaud H, Ascencio DI, Berger CM, Landry CR et al (2017) Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 355:630–634

    Article  CAS  Google Scholar 

  • Donoghue PCJ, Mark A, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312–319. https://doi.org/10.1016/j.tree.2005.04.008

    Article  PubMed  Google Scholar 

  • Fang P, Guo M (2017) Structural characterization of human aminoacyl-tRNA synthetases for translational and nontranslational functions. Methods 113:83–90. https://doi.org/10.1016/j.ymeth.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  • Francis BR (2015) The hypothesis that the genetic code originated in coupled synthesis of proteins and the evolutionary predecessors of nucleic acids in primitive cells. Life 5:467–505

    Article  CAS  Google Scholar 

  • Fung AWS, Payoe R, Fahlman RD (2016) Perspectives and insights into the competition for aminoacyl-tRNAs between the translational machinery and for tRNA-dependent non-ribosomal peptide bond formation. Life 6:2

    Article  Google Scholar 

  • Goudry M, Saugnet L, Belin P, Thai R, Amoureux R, Tellier C, Tuphile K, Jacqet M, Braud S, Courçon M et al (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol 5:414–420

    Article  Google Scholar 

  • Grosjean H, Houssier C (1990) Codon recognition: evaluation of the effects of modified bases in the anticodon loop of tRNA using the temperature-jump relaxation method. In: Gehrke CW, Kuo KCT (eds) Chromatography and modification of nucleotides. Elsevier, Amsterdam, pp A255–A295

    Google Scholar 

  • Gruic-Sovulj I, Landeka I, Söll D, Weygand-Durasevic I (2002) tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase. Eur J Biochem 269:5271–5279

    Article  CAS  Google Scholar 

  • Guimarães RC (1996) Anti-complementary order in the genetic coding system. Int Conf Orig Life 26:435–436

    Google Scholar 

  • Guimarães RC (2012) Mutuality in discrete and compositional information: perspectives for synthetic genetic codes. Cogn Comput 4:115–139

    Article  Google Scholar 

  • Guimarães RC (2013) Formation of the genetic dode—review and update as of November 2012. http://www.icb.ufmg.br/labs/lbem/pdf/GMRTgeneticodeNov12.pdf. All original publications. https://www.researchgate.net/profile/Romeu_Guimaraes (both sites accessed on August 2017)

  • Guimarães RC (2015) Emergence of information patterns: in the quantum and biochemical realms. Quantum Biosyst 6:148–159

    Google Scholar 

  • Guimarães RC (2017) Self-referential encoding on modules of anticodon pairs—roots of the biological flow system. Life 7:16. https://doi.org/10.3390/life7020016. www.mdpi.com/journal/life

    Article  Google Scholar 

  • Guimarães RC, Moreira CHC, Farias ST (2008) A self-referential model for the formation of the genetic code. Theory Biosci 127:249–270

    Article  Google Scholar 

  • Havrylenko S, Legouis R, Negrutskii B, Mirande M (2011) Caenorhabditis elegans evolves a new architecture for the Multi-aminoacyl-tRNA synthetase complex. J Biol Chem 286(32):28476–28487. https://doi.org/10.1074/jbc.M111.254037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havrylenko S, Mirande M (2015) Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 16:6571–6594. https://doi.org/10.3390/ijms16036571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hordijk W, Steel M (2017) Chasing the tail: the emergence of autocatalytic networks. Biosystems 152:1–10

    Article  CAS  Google Scholar 

  • Iranzo J, Puigb P, Lobkovsky AE, Wolf YI, Koonin EV (2016) Inevitability of genetic parasites. Genome Biol Evol 8(9):2856–2869. https://doi.org/10.1093/gbe/evw193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keam SP, Sobala A, St H, Hutvagner G (2017) tRNA-Derived RNA fragments associate with human multisynthetase complex (msc) and modulate ribosomal protein translation. J Proteome Res 16:413–420. https://doi.org/10.1021/acs.jproteome.6b00267

    Article  CAS  PubMed  Google Scholar 

  • Kenkel CD, Matz MV (2016) Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat Ecol Evol 1:0014

    Article  Google Scholar 

  • Lehmann J, Libchaber A (2008) Degeneracy of the genetic code and stability of the base pair at the second position of the anticodon. RNA 14:1264–1269

    Article  CAS  Google Scholar 

  • Millán PF, Schelcher C, Chihade J, Masquida B, Giegé P, Sauter C (2016) Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology. Arch Biochem Biophys 602:95–105. https://doi.org/10.1016/j.abb.2016.03.005

    Article  CAS  Google Scholar 

  • Mocibob M, Ivic N, Bilokapic S, Maier T, Luic M, Ban N, Durasevic IW (2010) Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Proc Natl Acad Sci USA 107:14585–14590

    Article  CAS  Google Scholar 

  • Moras D, Dock AC, Dumas P, Westhof E, Romby P, Ebel J-P, Giegé R (1986) Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAASP, a model for tRNA-mRNA recognition. Proc Natl Acad Sci USA 83:932–936

    Article  CAS  Google Scholar 

  • Moutiez M, Schmidt E, Seguin J, Thai R, Favry E, Belin P, Mechulan Y, Goudry M (2014) Unravelling the mechanism of non-ribosomal peptide synthesis by cyclopeptide synthases. Nat Commun 5:5141–5146

    Article  CAS  Google Scholar 

  • Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H et al (2015) Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115:293–301

    Article  CAS  Google Scholar 

  • Ognjenović J, Simonović M (2017) Human aminoacyl-tRNA synthetases in diseases of the nervous system. RNA Biol 23:1–12. https://doi.org/10.1080/15476286.2017.1330245

    Article  Google Scholar 

  • Park JW, Yan ZZ, Loh H, Will SA, Zwierlein MW (2017) Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357:372–375

    Article  CAS  Google Scholar 

  • Ptashne M (2013) Epigenetics: core misconcept. Proc Nat Acad Sci USA 110:7101–7103

    Article  CAS  Google Scholar 

  • Schimmel P (2017) The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2017.77

    Article  Google Scholar 

  • Schlosshauer M (2014) The quantum-to-classical transition and decoherence. In: Aspelmeyer M, Calarco T, Eisert J, Schmidt-Kaler F (eds) Handbook of quantum information. Springer, Berlin/Heidelberg

    Google Scholar 

  • Seligmann H, Ganesh W (2017) Genetic code optimization for cotranslational protein folding: codon directional asymmetry correlates with antiparallel beta-sheets, tRNA synthetase classes. Comput Struct Biotechnol J 15:412–424. https://doi.org/10.1016/j.csbj.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity–complexity–diversity in eco-physiology. In: Lüttge U, Beyschlag W (eds) Progress in Botany 76, 211–239. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-08807-5_9

    Google Scholar 

  • Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530

    Article  CAS  Google Scholar 

  • Xia T, SantaLucia JJr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37:14719–14735

    Article  CAS  Google Scholar 

  • Zurek WH (1991) Decoherence and the transition from quantum to classical. Phys Today, 36–44 Oct

    Article  Google Scholar 

  • Zurek WH (2002) Decoherence and the transition from quantum to classical—revisited. Los Alamos Sci 27:2–25

    Google Scholar 

Download references

Acknowledgements

The friendly collaboration and support of Gustavo Maia Souza and Alfredo Pereira Junior, personally and along our journey in the self-organization group of UNICAMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeu Cardoso Guimarães .

Editor information

Editors and Affiliations

Ethics declarations

No conflicts of interest are involved with the present communication.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guimarães, R.C. (2019). Roots of Complexity in the Self-referential Genetic Code. In: Wegner, L., Lüttge, U. (eds) Emergence and Modularity in Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-06128-9_6

Download citation

Publish with us

Policies and ethics