Skip to main content

Gaia—A Holobiont-like System Emerging From Interaction

  • Chapter
  • First Online:

Abstract

The Gaia hypothesis has been heavily discussed ever since its first formulation in the early 1970s. While parts of the hypothesis can be accepted right away, the optimizing view of Gaia as stabilizing conditions on Earth to support life on the planet has raised several doubts. In particular, the evolutionary aspect of conditions evolving in such an optimizing way is hardly in line with classical evolutionary theory. Considering Gaia as a holobiont-like system allows to clarify these issues. Accepting that every form of life interacts in manifold ways with its biotic and abiotic environments and that these interactions form a multilevel network from which higher-level properties can emerge, the self-stabilizing effect of the interactions of the biosphere with the geosphere and the atmosphere can be explained. With viewing evolution as adaptation of interaction and fitness as a shift in probability distribution of the observable, even the optimizing interpretation of Gaia does make sense and leads to valuable insight.

I will sing of well-founded Earth, mother of all, eldest of all beings. She feeds all creatures that are in the world, all that go upon the goodly land, and all that are in the paths of the seas, and all that fly: all these are fed of her store. Through you, O queen, men are blessed in their children and blessed in their harvests, and to you it belongs to give means of life to mortal men and to take it away.

(Homeric Hymns, see Anonymous 1914).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Stigmergy denotes the principle of “indirect communication mediated by modifications of the environment” (Marsh and Onof 2008, p. 137).

References

  • Adams KL (2010) Dandelions ‘remember’ stress: heritable stress-induced methylation patterns. New Phytol 185:867–868

    Article  PubMed  Google Scholar 

  • Aitchison JD, Rout MP (2015) The interactome challenge. J Cell Biol 211(4):729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Gen 17:487–500

    Article  CAS  Google Scholar 

  • Anonymous (1914) Homeric hymns. In: Evelyn-White HG (ed) The Homeric Hymns and Homerica (Evelyn-White HG, With an English Translation). Harvard University Press, London, William Heinemann Ltd., Cambridge, MA

    Google Scholar 

  • Arthur R, Nicholson A (2017) An entropic model of Gaia. J Theor Biol 430:177–184

    Article  CAS  PubMed  Google Scholar 

  • Badyaev AV, Uller T (2009) Parental effects in ecology and evolution: mechanisms, processes and implications. Phil Trans R Soc B 364(1520):1169–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedau MA (1996) The nature of life. In: Boden M (ed) The philosophy of artificial life. Oxford Univ Press, New York, pp 332–357

    Google Scholar 

  • Bedau MA (1998) Four puzzles about life. Artif Life 4:125–140

    Article  CAS  PubMed  Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci USA 102:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berner RA, VandenBrooks JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558

    Article  CAS  PubMed  Google Scholar 

  • Betts RA, LentonTM (2008) Second chances for lucky Gaia: a hypothesis of sequential selection. Hadley Centre, Technical Note 77 (6 Oct 2008)

    Google Scholar 

  • Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216

    Article  CAS  PubMed  Google Scholar 

  • Brulheide H, Manegold M, Jandt U (2004) The genetical structure of Populus euphratica and Alhagi sparsifolia stands in the Taklimakan desert. In: Runge M, Zhang X (eds) Ecophysiology and habitat requirement of perennial plant species in the Taklimakan desert. Shaker, Aachen, pp 153–160

    Google Scholar 

  • zu Castell W, Fleischmann F, Heger T, Matyssek R (2016) Shaping theoretic foundations of holobiont-like systems. Prog Bot 77:219–244

    Google Scholar 

  • Chinnusami V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Current Opinion Plant Biol 12:133–139

    Article  CAS  Google Scholar 

  • Christensen K, Di Collobioano SA, Hall M, Jensen HJ (2002) Tangled nature: a model of evolutionary ecology. J Theor Biol 216:73–84

    Article  PubMed  Google Scholar 

  • Davis JM (1980) The coordinated aerobatics of dunlin flocks. Anim Behav 28:668–673

    Article  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF (1981) Is nature really motherly? Coevol Quart 29:58–63

    Google Scholar 

  • Doolittle WF (2014) Natural selection through survival alone, and the possibility of Gaia. Biol Philos 29:415–423

    Article  Google Scholar 

  • Downing K, Zvirinsky P (1999) The simulated evolution of biochemical guilds: reconciling Gaia theory and natural selection. Artif Life 5:291–318

    Article  CAS  PubMed  Google Scholar 

  • Dyke JG, Weaver IS (2013) The emergence of environmental homeostasis in complex ecosystems. PLoS Comput Biol 9(5):e1003050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Free A, Barton NH (2007) Do evolution and ecology need the Gaia hypothesis? Trends Ecol Evol 22(11):611–619

    Article  PubMed  Google Scholar 

  • Fridriksson S (2005) Surtsey. Ecosystems formed. The Surtsey Research Society, Reykjavik

    Google Scholar 

  • Garnier S, Gautrais J, Theraulaz G (2007) The biological principles of swarm intelligence. Swarm Intell 1:3–31

    Article  Google Scholar 

  • Gershenson C (2012) The world as evolving information. In: Minai AA, Braha D, Bar-Yam Y (eds) Unifying themes in complex systems VII. Springer, Berlin, Heidelberg

    Google Scholar 

  • Gershenson C, Heylighen F (2005) How can we think the complex? In: Richardson K (ed) Managing organizational complexity: philosophy, theory and application. Information Age Publishing, Greenwich, pp 47–61

    Google Scholar 

  • Gershenson C, Trianni V, Werfel J, Sayama H (2018) Self-organization and artificial life: a review. arXiv:1804.01144 (3 Apr 2018)

  • Giurfa M (2012) Social learning in insects: a higher-order capacity? Front Behav Neurosci 6:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Grant MC (1993) The trembling plant. Discover. (Los Angeles) 84:82–89

    Google Scholar 

  • Greipsson S, Davy A (1994) Leymus arenarius. Characteristics and uses of a dune-building grass. Icel Agr Sci 8:41–50

    Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  CAS  PubMed  Google Scholar 

  • van de Guchte M, Blottière HM, Doré J (2018) Humans as holobionts: implications for prevention and therapy. Microbiome 6:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopfield JJ (1994) Physics, computation, and why biology looks so different. J Theor Biol 171:53–60

    Article  Google Scholar 

  • Kasting JF, Siefert JL (2002) Life and the evolution of Earth’s atmosphere. Science 296:1066–1068

    Article  CAS  PubMed  Google Scholar 

  • Kemperman JA, Barnes BV (1976) Clone size in American aspens. Can J Bot 54:2603–2607

    Article  Google Scholar 

  • Kirchner JW (2002) The Gaia hypothesis: fact, theory, and wishful thinking. Clim Change 52:391–408

    Article  Google Scholar 

  • Koshland DE (2002) The seven pillars of life. Science 295:2215–2216

    Article  CAS  PubMed  Google Scholar 

  • Kovatcheva-Datchary P, Tremaroli V, Bäckhed F (2013) The gut microbiota. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Human microbiology, 4th ed. Springer, Berlin, pp 3–24

    Chapter  Google Scholar 

  • Krakauer DC, Page KM, Erwin DH (2009) Diversity, dilemmas, and monopolies of niche construction. Am Nat 173(1):26–40

    Article  PubMed  Google Scholar 

  • Lane N, Martin WF (2012) The origin of membrane bioenergetics. Cell 151:1406–1416

    Article  CAS  PubMed  Google Scholar 

  • Lenton TM (2004) Clarifying Gaia: regulation with or without natural selection. In: Schneider SH, Miller JR, Crist E, Boston PJ (eds) Scientists debate Gaia. The next century. MIT Press, Cambridge, MA, pp 15–25

    Google Scholar 

  • Lenton TM, Wilkinson DM (2003) Developing the Gaia theory. Clim Change 58:1–12

    Article  Google Scholar 

  • Lovelock JE (1972) Gaia as seen through the atmosphere. Atmos Envir 6:579–580

    Article  Google Scholar 

  • Lovelock JE (1979) Gaia: a new look at life on earth. Oxford University Press, Oxford

    Google Scholar 

  • Lovelock JE (1988) The ages of Gaia. W.W. Norton & Company, New York

    Google Scholar 

  • Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 24:2–9

    Google Scholar 

  • Lüttge U (2016) Plants shape the terrestrial environment on earth: challenges of management for sustainability. Progr Bot 77:187–217

    Google Scholar 

  • Lüttge U, Scarano FR (2019) Emergence and Sustainment of Humankind on Earth: the Categorical Imperative. In: Wegner LH, Lüttge U (eds), Emergence and modularity in life science, Springer, Heidelberg, pp 235–254

    Google Scholar 

  • Magnússon B, Magnússon SH, Ólafsson E, Sigurdsson BD (2014) Plant colonization, succession and ecosystem development on Surtsey with reference to neighbouring islands. Biogeosciences 11:5521–5537

    Article  Google Scholar 

  • Marsh L, Onof C (2008) Stigmergic epistemology, stigmergic cognition. Cogn Syst Res 9(1–2):136–149

    Article  Google Scholar 

  • Martin A, Chahwan R, Parsa JY, Scharff MD (2015) Somatic hypermutation: the molecular mechanisms underlying the production of effective high-affinity antibodies. In: Honjo T, Reth M, Radbruch A, Alt F (eds) Molecuar biology of B cells. Academic Press, London, pp 363–388

    Google Scholar 

  • Matyssek R, Lüttge U (2013) Gaia: The planet Holobiont. In: Matyssek R, Lüttge U, Rennenberg H (eds), The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina, vol 114/391, pp 325–344

    Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  CAS  PubMed  Google Scholar 

  • Nachtigall W (2010) Bionik als Wissenschaft. Erkennen – Abstrahieren – Umsetzen. Springer, Heidelberg

    Google Scholar 

  • Netter H (1959) Theoretische Biochemie. Springer, Heidelberg

    Book  Google Scholar 

  • Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2(1):55–64

    Article  PubMed  Google Scholar 

  • Noble D (2017) Digital and analogue information in organisms. In: Walker SI, Davies PCW, Ellis GFR (eds) From matter to life. Information and causality. Cambridge University Press, Cambridge, pp 114–129

    Chapter  Google Scholar 

  • Popper K (2013) Eine Neuinterpretation des Darwinismus. Die erste Medawar-Vorlesung 1986 (German). Aufklärung und Kritik 1:7–20

    Google Scholar 

  • van der Post DJ, Franz M, Laland KN (2016) Skill learning and the evolution of social learning mechanisms. BMC Evol Biol 16(1):166

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comp Graph 21:25–34

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274

    Article  CAS  Google Scholar 

  • Saltz JB, Nuzhdin SV (2014) Genetic variation in niche construction: implications for development and evolutionary genetics. Trends Ecol Evol 29(1):8–14

    Article  PubMed  Google Scholar 

  • Schwartzman DW, Volk T (1989) Biotic enhancement of weathering and the habitability of Earth. Nature 340:457

    Article  Google Scholar 

  • Selous E (1931) Thought-transference (or what?) in birds. Constable, London

    Google Scholar 

  • Simpson GG (1953) The Baldwin effect. Evolution 7(2):110–117

    Article  Google Scholar 

  • Skinner MK, Gurerrero-Bosagna C, Haque MM, Nilsson EE, Koop JAH, Knutie SA, Clayton DH (2014) Epgenetics and the evolution of Darwin’s finches. Genome Biol Evol 6(8):1972–1989

    Article  PubMed  PubMed Central  Google Scholar 

  • Smedley SR, Eisner T (1996) Sodium: a male moth’s gift to its offspring. Proc Natl Acad Sci USA 93:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity—complexity—diversity in eco-physiology. Progr Bot 76:211–239

    CAS  Google Scholar 

  • Stern M (1999) Emergence of homeostasis and ‘noise imprinting’ in an evolution model. Proc Natl Acad Sci USA 96:10746–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16(3):284–307

    Article  Google Scholar 

  • Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA, Sapp J, Wandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microorganisms. MSystems 1(2):e00028–16

    Google Scholar 

  • Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Thornton A, Clutton-Brock T (2011) Social learning and the development of individual and group behaviour in mammal society. Phil Trans Roy Soc B Biol Sci 366:978–987

    Article  Google Scholar 

  • Torday JS (2015) Homeostasis as the mechanism of evolution. Biology 4:573–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyrrell T (2013) On Gaia: a critical investigation of the relationship between life and earth. Princeton University Press, Princeton

    Book  Google Scholar 

  • von Uexküll J (1957) A stroll through the worlds of animals and men. In: Schiller CH (ed) Instinctive behavior: the development of a modern concept. Internships University Press, New York, pp 5–80

    Google Scholar 

  • Ulanowicz RE (1998) Network orientors: theoretical and philosophical considerations why ecosystems may exhibit a propensity to increase ascendency. In: Müller F, Leupels M (eds) Eco targets, goal functions, and orientors. Springer, Berlin, pp 177–192

    Chapter  Google Scholar 

  • Ulanowicz RE (2014) Reckoning the nonexistent: putting the science right. Ecol Modell 293:22–30

    Article  Google Scholar 

  • Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Wandenkoornhuyse P (2018) A microorganisms’ journey between plant generations. Microbiome 6:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Varela FG, Maturana HR, Uribe R (1974) Autopoisis: the organization of living systems, its characterization and a model. BioSystems 5:187–196

    Article  CAS  Google Scholar 

  • Wadhams P (2016) The global impacts of rapidly disappearing arctic sea ice. YaleEnvironment360, 26 Sept 2016

    Google Scholar 

  • Walter H, Breckle SW (1984) Ökologie der Erde. 2. Spezielle Ökologie der tropischen und subtropischen Zonen. Gustav Fischer, Stuttgart

    Google Scholar 

  • Wassenburg JA, Dietrich S, Fietzke J, Fohlmeister J, Jochum KP, Scholz D, Richter DK, Sabaoui A, Spötl C, Lohmann G, Andreae MO, Immenhauser (2016) Reorganization of the north atlantic oscillation during early Holocene deglaciation. Nat Geosci 9:602–605

    Article  CAS  Google Scholar 

  • Watson AJ, Lovelock JE (1983) Biological homeostasis of the global environment: the parable of Daisyworld. Tellus 35B:284–289

    Article  Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams HTP, Lenton TM (2007) The Flask model: emergence of nutrient-recycling microbial ecosystems and their disruption by environment-altering rebel organisms. Oikos 116:1087–1105

    Article  Google Scholar 

  • Woods HA, Wilson JK (2013) An information hypothesis for the evolution of homeostasis. Trends Ecol Evol 28(5):283–289

    Article  PubMed  Google Scholar 

  • Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol 32:723–735

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang zu Castell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

zu Castell, W., Lüttge, U., Matyssek, R. (2019). Gaia—A Holobiont-like System Emerging From Interaction. In: Wegner, L., Lüttge, U. (eds) Emergence and Modularity in Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-06128-9_12

Download citation

Publish with us

Policies and ethics