Skip to main content

Geometric Constructions over \({\mathbb {C}}\) and \({\mathbb {F}}_2\) for Quantum Information

  • Chapter
  • First Online:
Quantum Physics and Geometry

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 25))

  • 1618 Accesses

Abstract

In this review paper I present two geometric constructions of distinguished nature, one is over the field of complex numbers \({\mathbb {C}}\) and the other one is over the two elements field \(\mathbb {F}_2\). Both constructions have been employed in the past 15 years to describe two quantum paradoxes or two resources of quantum information: entanglement of pure multipartite systems on one side and contextuality on the other. Both geometric constructions are linked to representation of semi-simple Lie groups/algebras. To emphasize this aspect one explains on one hand how well-known results in representation theory allows one to see all the classification of entanglement classes of various tripartite quantum systems (three qubits, three fermions, three bosonic qubits…) in a unified picture. On the other hand, one also shows how some weight diagrams of simple Lie groups are encapsulated in the geometry which deals with the commutation relations of the generalized N-Pauli group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This concept of contextuality also appears in Bell’s paper [9, 59].

  2. 2.

    In quantum physics, the outcomes of a measurement are encoded in an hermitian operator, called an observable. The eigenvalues of the observable correspond to the possible outcomes of the measurement and the eigenvectors correspond to the possible projections of the state after measurement.

  3. 3.

    Physically one may imagine that each part of the system is in a different location and experimentalists only apply local quantum transformations, i.e. some unitaries defined by local Hamiltonians.

  4. 4.

    In this paper an algebraic variety will always be the zero locus of a collection of homogeneous polynomials.

  5. 5.

    In the four-qubit case, the ring of SLOCC invariant polynomials is generated by four polynomials denoted by H, L, M and D in [57]. One way of defining the quotient map is to consider \(\Phi :\mathcal {H}\to {\mathbb {C}}^4\) defined by \(\Phi (\hat {x})=(H(\hat {x}),L(\hat {x}),N(\hat {x}),D(\hat {x}))\), see [37].

  6. 6.

    The discriminant of the miniversal deformation of a singularity parametrizes all singular deformations of the singularity [3].

  7. 7.

    The spin group Spin(2N) corresponds to the simply connected double cover of SO(2N) [27].

  8. 8.

    A point-line incidence structure is called a generalized quadrangle of type (s, t), and denoted by GQ(s, t) iff it is an incidence structure such that every point is on t + 1 lines and every line contains s + 1 points such that if pL, ∃!q ∈ L such that p and q are collinear.

  9. 9.

    Up to a transformation of coordinates, this is a set of points \(x\in \mathbb {P}^{2N-1}_2\) satisfying the standard equation x 1 x 2 + x 3 x 4 + ⋯ + x 2N−1 x 2N = 0.

  10. 10.

    Up to a transformation of coordinates this is defined as points \(x\in \mathbb {P}^{2N-1}_2\) such that f(x 1, x 1) + x 2 x 3 + …x 2N−1 x 2N = 0.

References

  1. E. Amselem, M. Rådmark, M. Bourennane, A. Cabello, State-independent quantum contextuality with single photons. Phys. Rev. Lett. 103(16), 160405 (2009)

    Google Scholar 

  2. A. Arkhipov, Extending and characterizing quantum magic games (2012). Preprint. arXiv:1209.3819

    Google Scholar 

  3. V.I. Arnold, Critical points of smooth functions, in Proceedings of ICM-74, vol. 1 (1974), pp. 19–40

    Google Scholar 

  4. V.I. Arnold, Singularity Theory, vol. 53 (Cambridge University Press, Cambridge, 1981)

    Book  Google Scholar 

  5. A. Aspect, J. Dalibard, G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49(25), 1804 (1982)

    Google Scholar 

  6. M. Aulbach, Classification of entanglement in symmetric states. Int. J. Quantum Inf. 10(07), 1230004 (2012)

    Google Scholar 

  7. M. Aulbach, D. Markham, M. Murao, Geometric entanglement of symmetric states and the majorana representation, in TQC (2010), pp. 141–158

    Google Scholar 

  8. H. Bartosik, J. Klepp, C. Schmitzer, S. Sponar, A. Cabello, H. Rauch, Y. Hasegawa, Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 103(4), 040403 (2009)

    Google Scholar 

  9. J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447 (1966)

    Google Scholar 

  10. C.H. Bennett, S. Popescu, D. Rohrlich, J.A. Smolin, A.V. Thapliyal, Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A 63(1), 012307 (2000)

    Google Scholar 

  11. L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, H. Ebrahim, Freudenthal triple classification of three-qubit entanglement. Phys. Rev. A 80(3), 032326 (2009)

    Google Scholar 

  12. L. Borsten, D. Dahanayake, M.J. Duff, A. Marrani, W. Rubens, Four-qubit entanglement classification from string theory. Phys. Rev. Lett. 105(10), 100507 (2010)

    Google Scholar 

  13. L. Borsten, M.J. Duff, P. Lévay, The black-hole/qubit correspondence: an up-to-date review. Classical Quantum Gravity 29(22), 224008 (2012)

    Google Scholar 

  14. E. Briand, J.G. Luque, J.Y. Thibon, A complete set of covariants of the four qubit system. J. Phys. A Math. Gen. 36(38), 9915 (2003)

    Google Scholar 

  15. E. Briand, J.G. Luque, J.Y. Thibon, F. Verstraete, The moduli space of three-qutrit states. J. Math. Phys. 45(12), 4855–4867 (2004)

    Article  MathSciNet  Google Scholar 

  16. D.C. Brody, A.C.T. Gustavsson, L.P. Hughston, Entanglement of three-qubit geometry. J. Phys. Conf. Ser. 67, 012044 (2007)

    Article  Google Scholar 

  17. J.L. Brylinski, Algebraic measures of entanglement, in Mathematics of Quantum Computation (Chapman and Hall/CRC, Boca Raton, 2002), pp. 3–23

    MATH  Google Scholar 

  18. A. Cabello, Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101(21), 210401 (2008)

    Google Scholar 

  19. A. Cabello, J. Estebaranz, G. García-Alcaine, Bell-Kochen-Specker theorem: a proof with 18 vectors. Phys. Lett. A 212(4), 183–187 (1996)

    Article  MathSciNet  Google Scholar 

  20. L. Chen, D.Ž. Djoković, M. Grassl, B. Zeng, Four-qubit pure states as fermionic states. Phys. Rev. A 88(5), 052309 (2013)

    Google Scholar 

  21. C. Chryssomalakos, E. Guzmán-González, E. Serrano-Ensástiga, Geometry of spin coherent states. J. Phys. A Math. Theor. 51(16), 165202 (2018)

    Google Scholar 

  22. O. Chterental, D.Ž. Djoković, Normal forms and tensor ranks of pure states of four qubits (2006). arXiv preprint quant-ph/0612184

    Google Scholar 

  23. R. Cleve, R. Mittal, Characterization of binary constraint system games. in International Colloquium on Automata, Languages, and Programming (Springer, Berlin, Heidelberg, 2014), pp. 320–331

    Google Scholar 

  24. M.J. Duff, S. Ferrara, E 7 and the tripartite entanglement of seven qubits. Phys. Rev. D 76(2), 025018 (2007)

    Google Scholar 

  25. W. Dür, G. Vidal, J.I. Cirac, Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Google Scholar 

  26. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Google Scholar 

  27. W. Fulton, J. Harris, Representation Theory, vol. 129 (Springer Science & Business Media, Berlin, 1991)

    MATH  Google Scholar 

  28. I.M. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Springer Science and Business Media, Berlin, 2008)

    MATH  Google Scholar 

  29. J. Harris, Algebraic Geometry: A First Course, vol. 133 (Springer Science & Business Media, Berlin, 2013)

    MATH  Google Scholar 

  30. H. Havlicek, B. Odehnal, M. Saniga, Factor-group-generated polar spaces and (multi-) qudits. Symmetry Integr. Geom. Methods Appl. 5, 096 (2009)

    MathSciNet  MATH  Google Scholar 

  31. H. Heydari, Geometrical structure of entangled states and the secant variety. Quantum Inf. Process. 7(1), 43–50 (2008)

    Article  MathSciNet  Google Scholar 

  32. F. Holweck, H. Jaffali, Three-qutrit entanglement and simple singularities. J. Phys. A Math. Theor. 49(46), 465301 (2016)

    Google Scholar 

  33. F. Holweck, P. Lévay, Classification of multipartite systems featuring only and genuine entangled states. J. Phys. A Math. Theor. 49, 085201 (2016)

    Google Scholar 

  34. F. Holweck, M. Saniga, Contextuality with a small number of observables. Int. J. Quantum Inf. 15(04), 1750026 (2017)

    Google Scholar 

  35. F. Holweck, J.G. Luque, J.Y. Thibon, Geometric descriptions of entangled states by auxiliary varieties. J. Math. Phys. 53(10), 102203 (2012)

    Google Scholar 

  36. F. Holweck, J.G. Luque, J.Y. Thibon, Entanglement of four qubit systems: a geometric atlas with polynomial compass I (the finite world). J. Math. Phys. 55(1), 012202 (2014)

    Google Scholar 

  37. F. Holweck, J.G. Luque, M. Planat, Singularity of type D4 arising from four-qubit systems. J. Phys. A Math. Theor. 47(13), 135301 (2014)

    Google Scholar 

  38. F. Holweck, M. Saniga, P. Lévay, A notable relation between N-qubit and 2N−1-qubit Pauli groups via binar LGr(N,  2N). Symmetry Integr. Geom. Methods Appl. 10, 041 (2014)

    MATH  Google Scholar 

  39. F. Holweck, H. Jaffali, I. Nounouh, Grover’s algorithm and the secant varieties. Quantum Inf. Process. 15(11), 4391–4413 (2016)

    Article  MathSciNet  Google Scholar 

  40. F. Holweck, J.G. Luque, J.Y. Thibon, Entanglement of four-qubit systems: a geometric atlas with polynomial compass II (the tame world). J. Math. Phys. 58(2), 022201 (2017)

    Google Scholar 

  41. M. Howard, J. Wallman, V. Veitch, J. Emerson, Contextuality supplies the “magic” for quantum computation. Nature 510(7505), 351–355 (2014)

    Article  Google Scholar 

  42. V.G. Kac, V.L. Popov, E.B. Vinberg, Sur les groupes lineaires algebriques dont l’algebres des invariants est libres. CR Acad. Sci. Paris 283, 875–878 (1976)

    MATH  Google Scholar 

  43. G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, State-independent experimental test of quantum contextuality. Nature 460(7254), 494–497 (2009)

    Article  Google Scholar 

  44. S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics, in The Logico-Algebraic Approach to Quantum Mechanics (Springer, Dordrecht, 1975), pp. 293–328

    Google Scholar 

  45. J.M. Landsberg, Tensors: Geometry and Applications (American Mathematical Society, Providence, 2012)

    MATH  Google Scholar 

  46. J.M. Landsberg, L. Manivel, The projective geometry of Freudenthal’s magic square. J. Algebra 239(2), 477–512 (2001)

    Article  MathSciNet  Google Scholar 

  47. J.M. Landsberg, L. Manivel, On the ideals of secant varieties of Segre varieties. Found. Comput. Math. 4(4), 397–422 (2004)

    Article  MathSciNet  Google Scholar 

  48. J.M. Landsberg, G. Ottaviani, Equations for secant varieties of Veronese and other varieties. Ann. Mat. Pura Appl. 192(4), 569–606 (2013)

    Article  MathSciNet  Google Scholar 

  49. C. Le Paige, Sur la théorie des formes binaires à plusieurs séries de variables. Bull. Acad. Roy. Sci. Belgique 2(3), 40–53 (1881)

    Google Scholar 

  50. P. Lévay, Strings, black holes, the tripartite entanglement of seven qubits, and the Fano plane. Phys. Rev. D 75(2), 024024 (2007)

    Google Scholar 

  51. P. Lévay, F. Holweck, Embedding qubits into fermionic Fock space: peculiarities of the four-qubit case. Phys. Rev. D 91(12), 125029 (2015)

    Google Scholar 

  52. P. Lévay, Z. Szabó, Mermin pentagrams arising from Veldkamp lines for three qubits. J. Phys. A Math. Theor. 50(9), 095201 (2017)

    Google Scholar 

  53. P. Lévay, P. Vrana, Three fermions with six single-particle states can be entangled in two inequivalent ways. Phys. Rev. A 78(2), 022329 (2008)

    Google Scholar 

  54. P. Lévay, M. Saniga, P. Vrana, P. Pracna, Black hole entropy and finite geometry. Phys. Rev. D 79(8), 084036 (2009)

    Google Scholar 

  55. P. Lévay, M. Planat, M. Saniga, Grassmannian connection between three-and four-qubit observables, Mermin’s contextuality and black holes. J. High Energy Phys. 2013(9), 37 (2013)

    Google Scholar 

  56. P. Lévay, F. Holweck, M. Saniga, Magic three-qubit Veldkamp line: a finite geometric underpinning for form theories of gravity and black hole entropy. Phys. Rev. D 96, 026018 (2017)

    Article  MathSciNet  Google Scholar 

  57. J.G. Luque, J.Y. Thibon, Polynomial invariants of four qubits. Phys. Rev. A 67(4), 042303 (2003)

    Google Scholar 

  58. J.G. Luque, J.Y. Thibon, Algebraic invariants of five qubits. J. Phys. A Math. Gen. 39(2), 371 (2005)

    Google Scholar 

  59. N.D. Mermin, Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3), 803 (1993)

    Google Scholar 

  60. A. Miyake, Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 67(1), 012108 (2003)

    Google Scholar 

  61. A. Miyake, F. Verstraete, Multipartite entanglement in 2×2×n quantum systems. Phys. Rev. A 69(1), 012101 (2004)

    Google Scholar 

  62. A. Miyake, M. Wadati, Multipartite entanglement and hyperdeterminants. Quantum Inf. Comput. 2(7), 540–555 (2002)

    MathSciNet  MATH  Google Scholar 

  63. A.G. Nurmiev, Orbits and invariants of third-order matrices. Mat. Sb. 191(5), 101–108 (2000)

    Article  MathSciNet  Google Scholar 

  64. L. Oeding, Set-theoretic defining equations of the tangential variety of the Segre variety. J. Pure Appl. Algebra 215(6), 1516–1527 (2011)

    Article  MathSciNet  Google Scholar 

  65. P.G. Parfenov, Tensor products with finitely many orbits. Russ. Math. Surv. 53(3), 635–636 (1998)

    Article  Google Scholar 

  66. M. Planat, M. Saniga, Five-qubit contextuality, noise-like distribution of distances between maximal bases and finite geometry. Phys. Lett. A 376(46), 3485–3490 (2012)

    Article  MathSciNet  Google Scholar 

  67. M. Planat, M. Saniga, F. Holweck, Distinguished three-qubit ‘magicity’ via automorphisms of the split Cayley hexagon. Quantum Inf. Process. 12(7), 2535–2549 (2013)

    Article  MathSciNet  Google Scholar 

  68. A. Peres, Two simple proofs of the Kochen-Specker theorem. J. Phys. A Math. Gen. 24(4), L175 (1991)

    Google Scholar 

  69. M. Saniga, M. Planat, Multiple Qubits as Symplectic Polar Spaces of Order Two. Advanced Studies in Theoretical Physics, vol. 1 (2007), pp. 1–4

    MathSciNet  MATH  Google Scholar 

  70. M. Saniga, M. Planat, Finite geometry behind the Harvey-Chryssanthacopoulos four-qubit magic rectangle. Quantum Inf. Comput. 12(11–12), 1011–1016 (2012)

    MathSciNet  MATH  Google Scholar 

  71. M. Saniga, M. Planat, P. Pracna, H. Havlicek, The Veldkamp space of two-qubits. Symmetry Integr. Geom. Methods Appl. 3, 075 (2007)

    MathSciNet  MATH  Google Scholar 

  72. M. Saniga, H. Havlicek, F. Holweck, M. Planat, P. Pracna, Veldkamp-space aspects of a sequence of nested binary Segre varieties. Ann. Inst. Henri Poincaré D 2(3), 309–333 (2015)

    Article  MathSciNet  Google Scholar 

  73. M. Sanz, D. Braak, E. Solano, I.L. Egusquiza, Entanglement classification with algebraic geometry. J. Phys. A Math. Theor. 50(19), 195303 (2017)

    Google Scholar 

  74. G. Sárosi, P. Lévay, Entanglement in fermionic Fock space. J. Phys. A Math. Theor. 47(11), 115304 (2014)

    Google Scholar 

  75. A. Sawicki, V.V. Tsanov, A link between quantum entanglement, secant varieties and sphericity. J. Phys. A Math. Theor. 46(26), 265301 (2013)

    Google Scholar 

  76. A. Terracini, Sulle v k per cui la varieta degli s h(h + 1) seganti ha dimensione minore dell’ordinario. Rendiconti del Circolo Matematico di Palermo (1884–1940), 31(1), 392–396 (1911)

    Google Scholar 

  77. K. Thas, The geometry of generalized Pauli operators of N-qudit Hilbert space, and an application to MUBs. Europhys. Lett. 86(6), 60005 (2009)

    Google Scholar 

  78. F. Verstraete, J. Dehaene, B. De Moor, H. Verschelde, Four qubits can be entangled in nine different ways. Phys. Rev. A 65(5), 052112 (2002)

    Google Scholar 

  79. P. Vrana, P. Lévay, Special entangled quantum systems and the Freudenthal construction. J. Phys. A Math. Theor. 42(28), 285303 (2009)

    Google Scholar 

  80. P. Vrana, P. Lévay, The Veldkamp space of multiple qubits. J. Phys. A Math. Theor. 43(12), 125303 (2010)

    Google Scholar 

  81. M. Waegell, P.K. Aravind, Proofs of the Kochen-Specker theorem based on a system of three qubits. J. Phys. A Math. Theor. 45(40), 405301 (2012)

    Google Scholar 

  82. M. Waegell, P.K. Aravind, Proofs of the Kochen-Specker theorem based on the N-qubit Pauli group. Phys. Rev. A 88(1), 012102 (2013)

    Google Scholar 

  83. J. Weyman, A. Zelevinsky, Singularities of hyperdeterminants. Ann. Inst. Four. 46(3), 591–644 (1996)

    Article  MathSciNet  Google Scholar 

  84. F.L. Zak, Tangents and Secants of Algebraic Varieties. Translations of Mathematical Monographs, vol. 127 (American Mathematical Society, Providence, 1993)

    Google Scholar 

Download references

Acknowledgements

The first part of this review paper was presented at the international workshop “Quantum Physics and Geometry” organized at Levico Terme in July 2017. I would like to thank the organizers for inviting me to present an overview on my research and to contribute to this UMI Lecture Notes. The research presented in this review has been done collectively; I would like to warmly thank my co-authors Jean-Gabriel Luque, Jean-Yves Thibon, Michel Planat, Metod Saniga, Péter Lévay and Hamza Jaffali for our rich collaboration over the past 6 years. This work was partially supported by the French “Investissements d’Avenir” program, project ISITE-BFC (contract ANR-15-IDEX-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Holweck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holweck, F. (2019). Geometric Constructions over \({\mathbb {C}}\) and \({\mathbb {F}}_2\) for Quantum Information. In: Ballico, E., Bernardi, A., Carusotto, I., Mazzucchi, S., Moretti, V. (eds) Quantum Physics and Geometry. Lecture Notes of the Unione Matematica Italiana, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-06122-7_5

Download citation

Publish with us

Policies and ethics