Skip to main content

Ameliorative Capability of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) Against Salt Stress in Plant

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Salt stress is one of the major abiotic constraints that inflicts impaired growth and reduces production potential in crop plants. Under salt stress conditions, numerous plant growth processes are affected, i.e., hormonal and nutritional imbalance, ion toxicity, physiological disorders, and susceptibility to insect and pest attack. The growing menace of salinity is predicted to intensify both in its extent and severity, posing a stern challenge for developing a resilient food production system in coming years. Various agro-biotechnological interventions are being employed to improve salt stress tolerance in plants. However, the complexity associated with plant salinity tolerance has only allowed marginal progress for breeders and genetic engineers. Use of soil microbial resources to promote plant growth by alleviating the exposed stress factor has gained much needed attention in recent times. The application of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) based bioinoculant strategy is perceived to enhance plant growth under salt stress. Microbial inoculation evoked plant stress tolerance response and improved plant growth, which is mainly triggered by modulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients, and inducing disease resistance. In this chapter, we describe causes of soil salinization and discuss potential impacts of salinity stress on plants. In addition, we also discussed the action mechanisms of plant growth promotion and/or regulation exhibited by PGPR and AMF, and highlighted their intrinsic traits that can be up scaled to increase their usefulness as a value-added product for stress agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22:274–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    CAS  Google Scholar 

  • Adam P (1990) Saltmarsh ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Ahanger MA, Hashem A, Abd Allah EF, Ahmad P (2014a) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance, vol 2, pp 69–95

    Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014b) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 25–55

    Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Ach Agron Soil Sci 56:575–588

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010) Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L subjected to NaCl stress. Russ J Plant Physiol 57:509–517

    CAS  Google Scholar 

  • Ahmed K, Nawaz MQ, Hussain SS, Rizwan M, Sarfraz M, Wainse GM, Jamil M (2017) Response of onion to different nitrogen levels and method of transplanting in moderately salt affected soil. Acta Agric Slov 109:303–313

    Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9:43–50

    Google Scholar 

  • Akram M, Shahid M, Tariq M, Azeem M, Javed MT, Saleem S, Riaz S (2016) Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize Zea mays L. Front Microbiol 7:867

    PubMed  PubMed Central  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Dulhli HS, Al-Rawahy SA, Prathapar S (2010) Effectiveness of mulches to control the soil salinity in sorghum fields irrigated with saline water. A monograph on management of salt-affected soils and water for sustainable agriculture. Sultan Qaboos University, Muscat, pp 41–46

    Google Scholar 

  • Al-Garni SMS (2006) Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am Eur J Agric Environ Sci 1:119–126

    Google Scholar 

  • Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Plant Physiol 118:562–570

    CAS  Google Scholar 

  • Al-Karaki GN (2000a) Growth, sodium, and potassium uptake and translocation in salt stressed tomato. J Plant Nutr 23:369–379

    CAS  Google Scholar 

  • Al-Karaki GN (2000b) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Sakamoto A, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci U S A 96:5862–5867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alqarawi AA, Abd Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9:802–810

    Google Scholar 

  • Amirjani MR (2010) Effect of NaCl on some physiological parameters of rice. Environ J Biol Sci 3:6–16

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Araya GG, Araya K, Zhang H, Ohmiya K, Liu F, Zhang C (2010) Characteristics of salt-affected soils by deep tillage up to 600 mm: disaggregation experiments of soil clods. Eng Agric Environ Food 3:93–99

    Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil 292:305–315

    CAS  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno A, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    CAS  PubMed  Google Scholar 

  • Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil 273:245–256

    CAS  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3:253–264

    CAS  Google Scholar 

  • Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981

    CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Google Scholar 

  • Barassi C, Ayrault G, Creus C, Sueldo R, Sobrero M (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    CAS  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32:216–232

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Preisfeld A (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    CAS  PubMed  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13:123–141

    Google Scholar 

  • Beresford Q, Bekle H, Phillips H, Mulcock J (2001) The salinity crisis: landscapes, communities and politics. University of Western Australia Press, Perth

    Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215

    Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Black AL, Brown PL, Halvorson AD, Siddoway FH (1981) Dry land cropping strategies for efficient water-use to control saline seeps in the northern Great Plains, USA. Agric Water Manage 4:295–311

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borde M, Dudhane M, Jite P (2011) Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Prot 30:265–271

    CAS  Google Scholar 

  • Bordi A (2010) The influence of salt stress on seed germination, growth and yield of canola cultivars. Not Bot Horti Agrobo 38:128–133

    Google Scholar 

  • Botella M, Del Amor F, Amorós A, Serrano M, Martínez V, Cerdá A (2000) Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. Physiol Plant 109:428–434

    CAS  Google Scholar 

  • Bybordi A, Tabatabaei SJ, Ahmedov A (2010) Effects of salinity stress on fatty acids composition of Canola (Brassica napus L.). Food Agric J 8:113–115

    CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil 233:269–281

    CAS  Google Scholar 

  • Carpici EB, Celik N, Bayram G (2009) Effects of salt stress on germination of somemaize (Zea mays L.) cultivars. Afr J Biotechnol 8:4918–4922

    CAS  Google Scholar 

  • Casati P, Drincovich MF, Edwards GE, Andreo CS (1999) Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res 61:99–105

    CAS  Google Scholar 

  • Chaum S, Kirdmanee C (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak J Bot 41:87–98

    CAS  Google Scholar 

  • Cheeseman JM (1988) Mechanism of salinity tolerance in plants. Plant Physiol 87:547–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang H, Zhang X, Tang M (2017) Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci 8:1739

    PubMed  PubMed Central  Google Scholar 

  • Chulan HA, Martin K (1992) The vesicular-arbuscular (VA) mycorrhiza and its effect on growth of vegetatively propagated Theobroma cacao L. Plant and Soil 144:227–233

    Google Scholar 

  • Chunthaburee S, Dongsansuk A, Sanitchon J, Pattanagul W, Theerakulpisut P (2016) Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J Biol Sci 23:467–477

    CAS  PubMed  Google Scholar 

  • Chutipaijit S, Cha-um S, Sompornpailin K (2011) High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Aust J Crop Sci 5:1191–1198

    CAS  Google Scholar 

  • Cisneros JM, Cantero JJ, Cantero A (1999) Vegetation, soil hydrophysical properties, and grazing relationships in saline-sodic soils of Central Argentina. Can J Soil Sci 79:399–409

    Google Scholar 

  • Cucci G, Lacolla G, Pallara M, Laviano R (2012) Reclamation of saline and saline-sodic soils using gypsum and leaching water. Afr J Agric Res 7:6508–6514

    Google Scholar 

  • Daeia G, Ardekania MR, Rejalic F, Teimurib S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Google Scholar 

  • Dantas BF, De Sa RL, Aragao CA (2007) Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Rev Bras Sementes 29:106–110

    Google Scholar 

  • Diacono M, Montemurro F (2015) Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture 5:221–230

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • DNRQ (1997) Salinity management handbook. Department of Natural Resources, Queensland. ISBN 0 7242 7412 X

    Google Scholar 

  • Doganlar ZB, Demir K, Basak H, Gul I (2010) Effects of salt stress on pigment and total soluble protein contents of the three different tomato cultivars. Afr J Agric 5:2056–2065

    Google Scholar 

  • Dolatabadian A, Modarressanavy SAM, Ghanati F (2011) Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not Sci Bio 3:41–45

    Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    CAS  PubMed  Google Scholar 

  • Duchaufour P (1982) Pedology: pedogenesis and classification. Allen and Unwin, London

    Google Scholar 

  • Ebrahim MKH, Saleem AR (2017) Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. J Taibah Uni Sci 11:850–860

    Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Google Scholar 

  • Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. Biotechnological techniques of stress tolerance in plants. Studium, Houston, TX, pp 21–39

    Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L). Saudi J Biol Sci 24:170–179

    CAS  PubMed  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Google Scholar 

  • Fang XJ, Wen ZX, Hao YN, Zhou Z, Li MS, Tao DM, Dong XU, Lai MJ (2013) Activities of principal photosynthetic enzymes in green macroalga Ulva linza: functional implication of C4 pathway in CO2 assimilation. Sci China Life Sci 56:571–580

    Google Scholar 

  • FAO (1997) Irrigation potential in Africa: a basin approach. FAO Land and Water Bulletin 4, Rome

    Google Scholar 

  • FAO (2015) FAO and ITPS: status of the world’s soil resources (SWSR)—main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome

    Google Scholar 

  • FAO-Unesco (1973) Irrigation, drainage and salinity. An International Sourcebook. UNESCO/Hutchinson, Paris/London, p 510

    Google Scholar 

  • Fazal A, Bano A (2016) Role of plant growth-promoting rhizobacteria (pgpr), biochar, and chemical fertilizer under salinity stress. Comm Soil Sci Plant Anal 47:1985–1993

    CAS  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    CAS  PubMed  Google Scholar 

  • Fercha A (2011) Some physiological and biochemical effects of NaCl salinity on durum wheat (Triticum durum Desf.). Adv Biol Res 5:315–322

    CAS  Google Scholar 

  • Fischer RA, Sayre K, Monasterio IO (2005) The effect of raised bed planting on irrigated wheat yield as influenced by variety and row spacing. In Proceedings of Workshop, Evaluation and performance of permanent raised bed cropping systems in Asia, Australia and Mexico held in Griffith, NSW, Australia

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    CAS  Google Scholar 

  • Gain P, Mannan MA, Pal PS, Hossain MM, Parvin S (2004) Effect of salinity on some yield attributes of rice. Pak J Biol Sci 7:760–762

    Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions. J Appl Microbiol 108:236–245

    CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by Mycorrhiza salinity in Cajanus cajan (L.) Millsp. (Pigeonpea). J Agron Crop Sci 195:110–123

    CAS  Google Scholar 

  • Geddie JL, Sutherland I (1993) Uptake of metals by bacterial polysaccharides. J Appl Microbiol 74:467–472

    CAS  Google Scholar 

  • George RJ, Nulsen RA, Ferdowsian R, Raper GP (1999) Interactions between trees and groundwaters in recharge and discharge areas—a survey of West Australian sites. Agric Water Manag 39:91–113

    Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. UNSW Press, Sydney

    Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007a) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007b) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Gomes-Filho E, Lima CRFM, Costa JH, da Silva AC, daGuia SLM, de Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27:147–157

    CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57:312–317

    CAS  PubMed  Google Scholar 

  • Goyal SS, Sharma SK, Rainsa DW, Lauchli A (1999a) Long term reuse of drainage waters of varying salinities for crop irrigation in a cotton-safflower rotation system in the San Joaquin Valley of California—a nine year study: I. Cotton (Gossypium hirsutum L.). J Crop Prod 2:181–213

    Google Scholar 

  • Goyal SS, Sharma SK, Rains DW, Lauchli A (1999b) Long term reuse of drainage waters of varying salinities for crop irrigation in a cotton-safflower rotation system in the San Joaquin Valley of California—a nine year study: II. Safflower (Carthamus tinctorius L.). J Crop Prod 2:215–227

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 204:460–469

    Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:1–10

    Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil 331:313–327

    CAS  Google Scholar 

  • Hala M, El-Bassiouny S, Bekheta MA (2005) Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Int J Agric Biol 3:363–368

    Google Scholar 

  • Hameed A, Egamberdieva D, Abd_Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 139–159

    Google Scholar 

  • Hasanuzzaman M, Fujita M, Islam MN, Ahamed KU, Nahar K (2009) Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol 6:85–90

    Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, El-Didamony G, Mona SA, Egamberdieva D (2014) Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot 46:2003–2013

    Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Mona SA, Alenazi MM, Egamberdieva D, Ahmad P (2015a) Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pak J Bot 47:327–340

    Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Egamberdieva D (2015b) Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.) Walp.] by arbuscular mycorrhizal fungi. Legume Res 38:579–588

    Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Wirth S, Egamberdieva D (2016a) Arbuscular mycorrhizal fungi alleviate salt stress in Lupine (Lupinus termis Forsik) through modulation of antioxidant defense systems and physiological traits. Legume Res 39:198–207

    Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Wirth S, Egamberdieva D (2016b) Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.11.015

    CAS  PubMed  Google Scholar 

  • Hashem A, Salwa AA, Alqarawi AA, Abdullah EF, Egamberdieva D (2016c) Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak J Bot 48:37–45

    Google Scholar 

  • Hatton TJ, Ruprecht J, George R (2003) Preclearing hydrology of the Western Australia wheatbelt: target for the future? Plant and Soil 257:341–356

    CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    CAS  PubMed  Google Scholar 

  • Hoseini SM (2010) Studying effects of salinity stress on germination, proline and carbohydrate content in Thyme (Thymus vulgaris L) seedlings. Int J Agric Crop Sci 2:34–38

    Google Scholar 

  • Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methyl glyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16:19–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Schmidhalter U (2002) Limitation of salt stress to plant growth. In: Hock B, Elstner CF (eds) Plant toxicology. Marcel Dekker Inc, New York, pp 91–224

    Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    CAS  Google Scholar 

  • Hussain TM, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008a) Recent advances in salt stress biology a review. Biotechnol Mol Biol Rev 3:8–13

    Google Scholar 

  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh B, Gopa GR (2008b) Recent advances in salt stress biology. Biotechnol J 3:1008–1013

    Google Scholar 

  • Ibrar M, Jabeen M, Tabassum J, Hussain F, Ilahi I (2003) Salt tolerance potential of Brassica juncea Linn. J Sci Technol Uni Peshawar 27:79–84

    Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt-tolerant plants. In: Pessaraki M (ed) Handbook of hotosynthesis. Marcel Dekker, New York, pp 897–909

    Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 8:1950

    PubMed  PubMed Central  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    PubMed  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    CAS  PubMed  Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403

    CAS  PubMed  Google Scholar 

  • Jamil M, Lee DB, Jung KY, Ashraf M, Lee SC, Rh ES (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Central Eur Agric 7:273–281

    Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Google Scholar 

  • Jobbágy EG, Jackson RB (2007) Groundwater and soil chemical changes under phreatophytic tree plantations. J Geophys Res 112:G02013. https://doi.org/10.1029/2006JG000246

    Article  CAS  Google Scholar 

  • Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Hervás J, Hiederer R, Jeffery S (2012) The state of soil in Europe—a contribution of the JRC to the European Environment Agency’s Environment State and Outlook R-SOER 2010

    Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    CAS  PubMed  Google Scholar 

  • Kalaji HM, Govindjee BK, Koscielniakd J, Zük-GoÅ‚aszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    CAS  Google Scholar 

  • Kang BR, Yang KY, Cho BH, Han TH, Kim IS, Lee MC, Anderson AJ, Kim YC (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52:473–476

    CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    CAS  Google Scholar 

  • Keutgen AJ, Pawelzik E (2009) Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ Exp Bot 65:170–176

    CAS  Google Scholar 

  • Khan Z, Doty SL (2009) Characterization of bacterial endophytes of sweet potato plants. Plant and Soil 322:197–207

    CAS  Google Scholar 

  • Khan MA, Rizvi Y (1994) Effect of salinity, temperature and growth regulators on the germination and early seedling growth of Atriplex griffithii var. Stocksii. Can J Bot 72:475–479

    Google Scholar 

  • Khan MA, Irwin A, Allan MS (2000) The effect of salinity on the growth, water status and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa L. Arid Environ J 45:73–84

    Google Scholar 

  • Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum, a potentially sustainable cattle feed alternative tomaize for saline areas. Agric Ecosyst Environ 129:542–546

    Google Scholar 

  • Khan MM, Al-Mas’oudi RSM, Al-Said F, Khan I (2013) Salinity effects on growth, electrolyte leakage, chlorophyll content and lipid peroxidationin cucumber (Cucumis sativus L.). In: Int Conf Food Agric Sci IPCBEE, vol 55. IACSIT Press, Singapore. https://doi.org/10.7763/IPCBEE.2013.V55.6

    Chapter  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    CAS  PubMed  Google Scholar 

  • Khodarahmpour Z, Ifara M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Rep 38:218–224

    CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus species. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Kloepper J, Gutierrez-Estrada A, McInroy J (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53:159–167

    CAS  PubMed  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    CAS  Google Scholar 

  • Koyro HW, Hussain T, Huchzermeyer B, Khan MA (2013) Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot 91:22–29

    CAS  Google Scholar 

  • Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 2. Academic, New York

    Google Scholar 

  • Linghe Z, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003

    Google Scholar 

  • Liu L, Sun H, Chen J, Zhang Y, Li D, Li C (2014) Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton. Plant Omics J 7:284–290

    CAS  Google Scholar 

  • Liu S, Guo X, Feng G, Maimaitiaili B, Fan J, He X (2016) Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant and Soil 398:195–206

    CAS  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance—current assessment. Proc Am Soc Civil Eng 103:115–134

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Mane AV, Karadge BA, Samant JS (2010) Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon nardus (L.) Rendle. J Chem Pharm Res 2:338–347

    CAS  Google Scholar 

  • Marcelis LFM, Van Hooijdonk J (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil 215:57–64

    CAS  Google Scholar 

  • Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552

    CAS  PubMed  Google Scholar 

  • Masood A, Iqbal N, Asgher M, Khan MIR, Fatma M, Khan NA (2013) Variation in carbohydrate accumulation in two cultivars of mustard and its association with salt tolerance. J Funct Environ Bot 3:94–102

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 2:565–572

    Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Review article. Arch Microbiol 193:77–81

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    CAS  PubMed  Google Scholar 

  • Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycine betaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349

    CAS  Google Scholar 

  • Mulrennan ME, Woodroffe CD (1998) Saltwater intrusion into the coastal plains of the Lower Mary River, Northern Territory, Australia. J Environ Manage 54:169–188

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Plant Biol J 59:651–681

    CAS  Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hort Sci 33:70–76

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387

    CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M (2009) Germination, growth, nodulation and yield performance of three mung bean varieties under different levels of salinity stress. Green Farming 2:825–829

    Google Scholar 

  • Najafi A, Ardakani MR, Rejali F, Sajedi N (2012) Response of winter barley to co-inoculation with Azotobacter and Mycorrhiza fungi influenced by plant growth promoting rhizobacteria. Ann Biol Res 3:4002–4006

    CAS  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agric Food Chem 56:4474–4481

    CAS  PubMed  Google Scholar 

  • Navarro JM, Perez-Tornero O, Morte A (2013) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171:76–85

    PubMed  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, γ-glutamyl cysteine and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264:98–110

    CAS  PubMed  Google Scholar 

  • Otoch MDL, Sobreira ACM, deAragao MEF, Orellano EG, Lima MDS, deMelo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551

    CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto biochemical responses of plants. Plant Soil J 54:89–99

    CAS  Google Scholar 

  • Paul D (2012) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 52:1–10

    Google Scholar 

  • Paul EA, Kucey RMN (1981) Carbon flow in plant microbial associations photosynthesis. Science 213:473–474

    CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Google Scholar 

  • Piotr S, Grazyna K (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    Google Scholar 

  • Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14:211–218

    CAS  Google Scholar 

  • Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83.

    CAS  PubMed  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizalfungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    CAS  PubMed  Google Scholar 

  • Provin TL, Pitt JL (2001) Managing soil salinity. Texas AgriLife Extension Service publication E-60. Texas A&M University Publication, College Station, TX

    Google Scholar 

  • Purty RS, Kumar G, Singla-Pareek SL, Pareek A (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Google Scholar 

  • Qureshi RH (2003) Impact of agriculture practices on environmental sustainability in South Asia. In: Proceedings of better agricultural practices for environmental sustainability. Asian Productivity Organization (APO), Tokyo

    Google Scholar 

  • Qureshi RH, Aslam M, Akhtar J (2003) Productivity enhancement in the salt-affected lands of Joint Satiana Pilot Project area of Pakistan. In: Goyal SS, Sharma SK, Rains DW (eds) Crop production in saline environments: Global and integrative perspectives. The Food Products Press, Binghamton, New York, pp 277–297

    Google Scholar 

  • Rabie GH (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230

    CAS  PubMed  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–220

    CAS  Google Scholar 

  • Rahdari P, Tavakoli S, Hosseini SM (2012) Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in Purslane (Portulaca oleraceae L.) leaves. Stress Physiol Biol J 8:182–193

    Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Planta 35:1039–1050

    CAS  Google Scholar 

  • Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    CAS  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. USDA, Washington, DC

    Google Scholar 

  • Richards LA (1969) Diagnosis and improvement of saline and alkali soils. Agriculture Handbook No. 60. United States Department of Agriculture, Washington DC

    Google Scholar 

  • Rogers ME, Grieve CM, Shannon MC (2003) Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant and Soil 253:187–194

    CAS  Google Scholar 

  • Rose C (2004) An introduction to the environmental physics of soil, water and watersheds. Cambridge University Press, Cambridge

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Gómez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    CAS  Google Scholar 

  • Runyan CW, D’Odorico P (2010) Ecohydrological feedbacks between salt accumulation and vegetation dynamics: role of vegetation-groundwater interactions. Water Resour Res 46:W11561

    Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    CAS  PubMed  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci J 86:407–421

    CAS  Google Scholar 

  • Sairam RK, Roa KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    CAS  Google Scholar 

  • Sannazzaro AI, Ruíz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotusglaber by Glomus intraradices. Plant and Soil 285:279–287

    CAS  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondale MH, Maitia TK (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    CAS  PubMed  Google Scholar 

  • Sarker A, Hossain I, Kashem A (2014) Salinity (NaCl) tolerance of four vegetable crops during germination and early seedling growth. Int J Latest Res Sci Technol 3:91–95

    Google Scholar 

  • Sarwat M, Hashem A, Ahanger MA, Abd-Allah EF, Alqarawi AA, Alyemeni MN, Ahmad P, Gucel S (2016) Mitigation of NaCl Stress by arbuscular mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica juncea L.) plants. Front Plant Sci 7:869

    PubMed  PubMed Central  Google Scholar 

  • Schagerl M (2016) Soda lakes of East Africa. Springer, Cham

    Google Scholar 

  • Schofield RV, Kirkby MJ (2003) Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Global Biogeochem Cycles 17:1078

    Google Scholar 

  • Senadheera P, Tirimanne S, Maathuis FJM (2012) Long term salinity stress reveals variety specific differences in root oxidative stress response. Ric Sci 19:36–43

    Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salanity tolerance in cereals. Cri Rev Plant Sci 32:237–249

    Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    CAS  PubMed  Google Scholar 

  • Shirmardi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflower (Helianthus annuus L.) in saline soils. Not Sci Bio 2:57–66

    CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Sinclair G, Charest C, Dalpe Y, Khanizadeh S (2014) Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agric Food Sci 23:146–158

    Google Scholar 

  • Sjöberg J (2005) Arbuscular mycorrhizal fungi–occurrence in Sweden and interaction with a plant pathogenic fungus in barley. PhD Thesis. Swedish University of Agricultural Sciences, Uppsala, pp 1–55

    Google Scholar 

  • Slinger D, Tenison K (2007) Salinity Glove Box Guide: NSW Murray and Murrumbidgee Catchments, NSW Department of Primary Industries

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego, CA

    Google Scholar 

  • Solangi SB, Chachar QI, Chachar SD, Solangi AB, Solangi JA (2016) Effect of salinity (NaCl) stress on physiological characteristics of rice (Oryza sativa L.) at early seedling stage. J Agric Technol 12:263–279

    CAS  Google Scholar 

  • Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot 49:1329–1337

    CAS  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil 312:15–23

    CAS  Google Scholar 

  • Spychalla JP, Desborough SL (1990) Superoxide dismutase, catalase, and α-tocopherol content of stored potato tubers. Plant Physiol 94:1214–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stirzaker RJ, Vertessy RA, Sarre A (2002) Trees, water and salt: an Australian guide to using trees for healthy catchments and productive farms. Rural Industries Research and Development Corporation, Canberra

    Google Scholar 

  • Sultana N, Keda T, Itoh R (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot 42:211–220

    CAS  Google Scholar 

  • Tang M, Chen H, Huang JC, Tian ZQ (2009) AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biol Biochem 41:936–940

    CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    CAS  Google Scholar 

  • Tarbuck EJ, Lutgens FK (2012) Earth science. Prentice Hall/Pearson, Upper Saddle River

    Google Scholar 

  • Tatar O, Brueck H, Gevreka MN, Asch F (2010) Physiological responses of two Turkish rice (Oryza sativa L.) varieties to salinity. Turk J Agric For 34:451–459

    Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur M, Sharma AD (2005) Salt stress induced proline accumulation in germinating embryos: evidence suggesting a role of proline in seed germination. J Arid Environ 62:517–523

    Google Scholar 

  • Thompson JP (1990) Soil sterilization methods to show VA-mycorrhizae aid P and Zn nutrition of wheat in vertisols. Soil Biol Biochem 22:229–240

    CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  PubMed  Google Scholar 

  • Tomar NS, Agarwal RM (2013) Influence of treatment of Jatropha curcas L. leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.). Am J Plant Sci 4:1134–1150

    Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, Gara LD (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52:1647–1654

    CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    CAS  Google Scholar 

  • TÏŒth G, Montanarella L, Rusco E (2008) Threats to soil quality in Europe. Institute for Environment and Sustainability, Land Management and Natural Hazards Unit, Office for the Official Publications of the European Communities, Luxembourg, EUR 23438 EN, pp 162

    Google Scholar 

  • Ulfat M, Athar H, Ashraf M, Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.). Pak J Bot 39:1593–1608

    Google Scholar 

  • UNEP (1992) Proceedings of the Ad-hoc Expert Group Meeting to Discuss Global Soil Databases and Appraisal of GLASOD/SOTER, February 24–28. Nairobi, UNEP

    Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496

    CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singhd S, Singh P (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    CAS  Google Scholar 

  • USDA (1998) Soil Quality Resource Concerns: Salinization. Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Usha K, Mathew R, Singh B (2005) Effect of three species of arbuscular mycorrhiza on bud sprout and ripening in grapevine (Vitis vinifera L.) cv. Perlette. Biol Agric Hort 23:73–83

    Google Scholar 

  • Vaidyanathan R, Kuruvilla S, Thomas G (1999) Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci 140:21–30

    CAS  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CM (2004) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Google Scholar 

  • Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    CAS  PubMed  Google Scholar 

  • Wang H, Hsieh YP, Harwell MA, Huang W (2007) Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions. Ecol Model 201:429–439

    Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10,773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilford J, de Caritat P, Bui E (2015) Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma 259:81–92

    Google Scholar 

  • Williamson DR (1986) The hydrology of salt affected soils in Australia. Reclam Reveg Res 5:181–196

    Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154

    Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Google Scholar 

  • Wu QS, Zou YN, Abd_Allah EF (2014) Mycorrhizal association and ROS in plants. In: Ahmad P (ed) Oxidative damage to plants. Elsevier, Amsterdam, pp 453–475

    Google Scholar 

  • Xie X, Weng B, Cai B, Dong Y, Yan C (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl Soil Ecol 75:162–171

    Google Scholar 

  • Xu S, Hu B, He Z, Ma F, Feng J, Shen W, Yan J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12:2488–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challanges and opportunities. Trends Plant Sci 10(12):615–620

    CAS  PubMed  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348

    Google Scholar 

  • Yildirim E, Taylor A (2005) Effect of biological treatments on growth of bean plants under salt stress. Science 123:1

    Google Scholar 

  • Yildirim E, Turan M, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Roumanian Biotechnol Lett 13:3933–3943

    Google Scholar 

  • Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant and Soil 297:139–145

    CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    CAS  PubMed  Google Scholar 

  • Zhong QH, Chao XH, Zhibin Z, Zhirong Z, Huai SW (2007) Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133

    Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Plant Biol J 53:247–273

    CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahira Yasmeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasmeen, T. et al. (2019). Ameliorative Capability of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) Against Salt Stress in Plant. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_17

Download citation

Publish with us

Policies and ethics