Skip to main content

A Novel Strategy for the Surface Modification of Superparamagnetic (Fe3O4) Iron Oxide Nanoparticle for Lung Cancer Imaging

  • Chapter
  • First Online:
Surface Modification of Nanoparticles for Targeted Drug Delivery
  • 1634 Accesses

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have recently gained interest due to their low toxicity, biocompatibility, magnetic potential, and catalytic nature. Their biocompatible nature makes them suitable candidate for biomedical applications. SPIONs are considered as inert and used in different areas such as imaging, targeted drug delivery and biosensors. Their surfaces can be modified using different coating and labeling agents which has broaden their role in diagnosis and nanomedicine applications. SPIONs have got wide range of applications in biomedical and healthcare industry such as drug-delivery vehicle for chemotherapeutic drugs, an agent to induce heat mediated killing of cancer cells (hyperthermia) and as contrast agent in magnetic resonance imaging (MRI). More often SPIONs are used for simultaneous image guided delivery of chemotherapeutic drugs to the tumor cells and hyperthermia is used synergistically to enhance the overall lethal effect of the whole treatment process toward tumor cells. In this chapter, we discuss different strategies for surface modification of SPIONs and their applications for diagnosis and treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering, 34(1), 23–38.

    Article  Google Scholar 

  2. Huilan, Y., Gangyi, Z., Xiaohang, L., Congyang, L., Tingting, Z., Yanduo, T., Yanjun, K., Jiacheng, S., Yin, T., Bin, L., Xin, Z., & Gen, Z. (2016). Fe3O4 nanoparticles with ursolic methyl ester induce apoptosis of multidrug-resistant leukemia KA cell: In vitro evaluation. Journal of Nanoscience and Nanotechnology, 16(7), 7140–7144.

    Article  Google Scholar 

  3. Xuhua, M., Zhanyun, R., Bin, H., Maomao, P., Haojie, L., Yina, D., Qiufan, X., Yihua, Z., Changliang, Z., Zhe, L., Yuxin, C., & Yanping, Z. (2016). Daunorubicin loaded Fe3O4 nanoparticles induce apoptosis of glioma cells and disrupt tight junction at blood–brain barrier. Journal of Nanoscience and Nanotechnology, 16(12), 12356–12361.

    Article  Google Scholar 

  4. Gupta, J., Prakash, A., Jaiswal, M. K., Agarrwal, A., & Bahadur, D. (2018). Superparamagnetic iron oxide-reduced graphene oxide nanohybrid—A vehicle for targeted drug delivery and hyperthermia treatment of cancer. Journal of Magnetism and Magnetic Materials, 448, 332–338.

    Article  CAS  Google Scholar 

  5. Ebrahimi, E., Khandaghi, A. A., Valipour, F., Babaie, S., Asghari, F., Motaali, S., Abbasi, E., Akbarzadeh, A., & Davaran, S. (2016). In vitro study and characterization of doxorubicin-loaded magnetic nanoparticles modified with biodegradable copolymers. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 550–558.

    Article  CAS  Google Scholar 

  6. Mu, X., Zhang, F., Kong, C., Zhang, H., Zhang, W., Ge, R., Liu, Y., & Jiang, J. (2017). EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. International Journal of Nanomedicine, 12, 2899–2911.

    Article  CAS  Google Scholar 

  7. Zhang, Y., Wang, X. J., Guo, M., Yan, H. S., Wang, C. H., & Liu, K. L. (2014). Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine. CJPS, 32(10), 1329–1337.

    CAS  Google Scholar 

  8. Huang, Y., Mao, K., Zhang, B., & Zhao, Y. (2017). Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Materials Science and Engineering. C, Materials for Biological Applications, 70, 763–771.

    Article  CAS  Google Scholar 

  9. Yu, K. S., Lin, M. M., Lee, H. J., Tae, K. S., Kang, B. S., Lee, J. H., Lee, N. S., Jeong, Y. G., Han, S. Y., & Kim, D. K. (2016). Receptor-meditated endocytosis by hyaluronic acid@superparamagnetic nanovetor for targeting of CD44-overexpressing tumor cells. Nanomaterials, 6(8), 149.

    Article  Google Scholar 

  10. Veiseh, O., Gunn, J. W., Kievit, F. M., Sun, C., Fang, C., Lee, J. S., & Zhang, M. (2009). Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small, 5(2), 256–264.

    Article  CAS  Google Scholar 

  11. Akbarzadeh, A., Mikaeili, H., Zarghami, N., Mohammad, R., Barkhordari, A., & Davaran, S. (2012). Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. International Journal of Nanomedicine, 7, 511–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, H., Choi, S. R., Zhou, R., Kung, H. F., & Chen, I. W. (2004). Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic Radiology, 11(9), 996–1004.

    Article  Google Scholar 

  13. Pernal, S., Wu, V. M., & Uskoković, V. (2017). Hydroxyapatite as a vehicle for the selective effect of superparamagnetic iron oxide nanoparticles against human glioblastoma cells. ACS Applied Materials & Interfaces, 9(45), 39283–39302.

    Article  CAS  Google Scholar 

  14. Lee, M. S., Su, C. M., Yeh, J. C., Wu, P. R., Tsai, T. Y., & Lou, S. L. (2016). Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment. International Journal of Nanomedicine, 11, 4583–4594.

    Article  CAS  Google Scholar 

  15. Ye, P., Kong, Y., Chen, X., Li, W., Liu, D., Xie, Y., Zhou, Y., Zou, H., Chang, Z., Dai, H., Kong, X., & Liu, P. (2017). Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing breast cancer cells. Oncotarget, 8(7), 11389–11399.

    Article  Google Scholar 

  16. Huang, G., Zhang, C., Li, S., Khemtong, C., Yang, S. G., Tian, R., Minna, J. D., Brown, K. C., & Gao, J. A. (2009). Novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging. Journal of Materials Chemistry, 19, 6367–6372.

    Article  CAS  Google Scholar 

  17. Yoo, M. K., Park, I. K., Lim, H. T., Lee, S. J., Jiang, H. L., Kim, Y. K., Choi, Y. J., Cho, M. H., & Cho, C. S. (2012). Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomaterialia, 8(8), 3005–3013.

    Article  CAS  Google Scholar 

  18. Sadhukha, T., Wiedmann, T. S., & Panyam, J. (2013). Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials, 34(21), 5163–5171.

    Article  CAS  Google Scholar 

  19. Chiang, C. S., Tseng, Y. H., Liao, B. J., & Chen, S. Y. (2015). Magnetically targeted nanocapsules for PAA-cisplatin-conjugated cores in PVA/SPIO shells via surfactant-free emulsion for reduced nephrotoxicity and enhanced lung cancer therapy. Advanced Healthcare Materials, 4(7), 1066–1075.

    Article  CAS  Google Scholar 

  20. Chen, C., Yu, H., Xia, R., Wang, L., Ai, H., Liu, S., Xu, Z., Xiao, X., & Gao, F. (2014). Magnetic resonance tracking of endothelial progenitor cells labeled with alkyl-polyethylenimine 2 kDa/superparamagnetic iron oxide in a mouse lung carcinoma xenograft model. Molecular Imaging, 13. https://doi.org/10.2310/7290.2014.00030.

    Article  Google Scholar 

  21. Menon, J. U., Kuriakose, A., Iyer, R., Hernandez, E., Gandee, L., Zhang, S., Takahashi, M., Zhang, Z., Saha, D., & Nguyen, K. T. (2017). Dual-drug containing core-shell nanoparticles for lung cancer therapy. Scientific Reports, 7, 13249.

    Article  Google Scholar 

  22. Hou, X., Zhang, H., Li, H., & Zhang, D. (2016). Magnetic albumin immuno-nanospheres as an efficient gene delivery system for a potential use in lung cancer: Preparation, in vitro targeting and biological effect analysis. Journal of Drug Targeting, 24(3), 247–256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, M., Kumar, Y. (2019). A Novel Strategy for the Surface Modification of Superparamagnetic (Fe3O4) Iron Oxide Nanoparticle for Lung Cancer Imaging. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_8

Download citation

Publish with us

Policies and ethics