Skip to main content

Surface Modification and Bioconjugation of Nanoparticles for MRI Technology

  • Chapter
  • First Online:
Book cover Surface Modification of Nanoparticles for Targeted Drug Delivery

Abstract

Nanomaterials (NPs) with precise biological functions have considerable potential for use in biomedical applications. Surface modification is one of the effective routes to impart such desired and precise biological functions to NPs. Introduction of various reactive functional groups on the surface of NPs are required to conjugate a spectrum of contrast agents (CAs), for the targeted imaging such as magnetic resonance imaging (MRI). Current state in surface modification of NPs for preparing CAs of MRI is summarized in this chapter. Chemistries involved in the bioconjugation and surface modification are discussed. Chemical and bioconjugate reactions to transform the surface of NPs such as silica NPs, gold NPs, and gadolinium NPs are highlighted. Coating is another important approach to enhance the functionalities of CAs for MRI application, therefore, light is thrown on the coating mechanism of organic polymers including dextran, chitosan, and copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, B. R., & Gambhir, S. S. (2017). Nanomaterials for in vivo imaging. Chemical Reviews, 117(3), 901–986. https://doi.org/10.1021/acs.chemrev.6b00073.

    Article  CAS  PubMed  Google Scholar 

  2. Na, H. B., & Hyeon, T. (2009). Nanostructured T1 MRI contrast agents. Journal of Materials Chemistry, 19(35), 6267–6273. https://doi.org/10.1039/B902685A.

    Article  CAS  Google Scholar 

  3. Cao, Y., Xu, L., Kuang, Y., Xiong, D., & Pei, R. (2017). Gadolinium-based nanoscale MRI contrast agents for tumor imaging. Journal of Materials Chemistry B, 5(19), 3431–3461. https://doi.org/10.1039/C7TB00382J.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41(7), 2575–2589. https://doi.org/10.1039/C1CS15248C.

    Article  CAS  PubMed  Google Scholar 

  5. Hahn, M. A., Singh, A. K., Sharma, P., Brown, S. C., & Moudgil, B. M. (2011). Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Analytical and Bioanalytical Chemistry, 399(1), 3–27. https://doi.org/10.1007/s00216-010-4207-5.

    Article  CAS  PubMed  Google Scholar 

  6. Merbach, A. S., Helm, L., & Toth, E. (2013). The chemistry of contrast agents in medical magnetic resonance imaging. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  7. Chan, K. W.-Y., & Wong, W.-T. (2007). Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coordination Chemistry Reviews, 251(17), 2428–2451. https://doi.org/10.1016/j.ccr.2007.04.018.

    Article  CAS  Google Scholar 

  8. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., & Josephson, L. (2005). Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418. https://doi.org/10.1038/nbt1159.

    Article  CAS  PubMed  Google Scholar 

  9. Veiseh, O., Kievit, F., Ellenbogen, R. G., & Zhang, M. (2011). Cancer cell invasion: Treatment and monitoring opportunities in nanomedicine. Advanced Drug Delivery Reviews, 63(8), 582–596. https://doi.org/10.1016/j.addr.2011.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schellenberger, E. A., Weissleder, R., & Josephson, L. (2004b). Optimal modification of annexin V with fluorescent dyes. Chembiochem: A European Journal of Chemical Biology, 5(3), 271–274. https://doi.org/10.1002/cbic.200300741.

    Article  CAS  PubMed  Google Scholar 

  11. Lam, T., Avti, P. K., Pouliot, P., Maafi, F., Tardif, J. C., Rheaume, E., Lesage, F., & Kakkar, A. (2016). Fabricating water dispersible superparamagnetic iron oxide nanoparticles for biomedical applications through ligand exchange and direct conjugation. Nanomaterials, 6(6), E100. https://doi.org/10.3390/nano6060100.

    Article  CAS  PubMed  Google Scholar 

  12. Sharpless, K. B., Finn, M. G., & Kolb, H. C. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie (International ed in English), 40(11), 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::AID-ANIE2004%3E3.0.CO;2-5.

    Article  Google Scholar 

  13. Lutz, J. F., & Zarafshani, Z. (2008). Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Advanced Drug Delivery Reviews, 60(9), 958–970. https://doi.org/10.1016/j.addr.2008.02.004.

    Article  CAS  PubMed  Google Scholar 

  14. Hein, C. D., Liu, X. M., & Wang, D. (2008). Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical Research, 25(10), 2216–2230. https://doi.org/10.1007/s11095-008-9616-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, E. Y., Josephson, L., & Weissleder, R. (2006). “Clickable” nanoparticles for targeted imaging. Molecular Imaging, 5(2), 122–128.

    Article  PubMed  Google Scholar 

  16. Maltzahn, v G., Ren, Y., Park, J.-H., Min, D.-H., Kotamraju, V. R., Jayakumar, J., Fogal, V., Sailor, M. J., Ruoslahti, E., & Bhatia, S. N. (2008). In vivo tumor cell targeting with “Click” nanoparticles. Bioconjugate Chemistry, 19(8), 1570–1578. https://doi.org/10.1021/bc800077y.

    Article  CAS  Google Scholar 

  17. Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., Bhattarai, N., Ellenbogen, R., Sze, R., Hallahan, A., Olson, J., & Zhang, M. (2005). Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Letters, 5(6), 1003–1008. https://doi.org/10.1021/nl0502569.

    Article  CAS  PubMed  Google Scholar 

  18. Conroy, S., Omid, V., Jonathan, G., Chen, F., Stacey, H., Donghoon, L., Raymond, S., Richard, G. E., Jim, O., & Miqin, Z. (2008). In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small, 4(3), 372–379. https://doi.org/10.1002/smll.200700784.

    Article  CAS  Google Scholar 

  19. Medarova, Z., Pham, W., Farrar, C., Petkova, V., & Moore, A. (2007). In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine, 13, 372. https://doi.org/10.1038/nm1486.

    Article  CAS  PubMed  Google Scholar 

  20. Högemann, D., Josephson, L., Weissleder, R., & Basilion, J. P. (2000). Improvement of MRI probes to allow efficient detection of gene expression. Bioconjugate Chemistry, 11(6), 941–946. https://doi.org/10.1021/bc000079x.

    Article  CAS  PubMed  Google Scholar 

  21. Schellenberger, E. A., Sosnovik, D., Weissleder, R., & Josephson, L. (2004a). Magneto/optical annexin V, a multimodal protein. Bioconjugate Chemistry, 15(5), 1062–1067. https://doi.org/10.1021/bc049905i.

    Article  CAS  PubMed  Google Scholar 

  22. Kohler, N., Fryxell, G. E., & Zhang, M. (2004). A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. Journal of the American Chemical Society, 126(23), 7206–7211. https://doi.org/10.1021/ja049195r.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, A. Z., Vaishali, B., Christophoros, V. C., Frank, G., Frank, A., Liangfang, Z., Mariam, S., Kai, Y., Michael, J. C., Robert, L., Philip, W. K., Neil, H. B., Sangyong, J., & Omid, C. F. (2008). Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem, 3(9), 1311–1315. https://doi.org/10.1002/cmdc.200800091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steitz, B., Hofmann, H., Kamau, S. W., Hassa, P. O., Hottiger, M. O., von Rechenberg, B., Hofmann-Amtenbrink, M., & Petri-Fink, A. (2007). Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. Journal of Magnetism and Magnetic Materials, 311(1), 300–305. https://doi.org/10.1016/j.jmmm.2006.10.1194.

    Article  CAS  Google Scholar 

  25. Park, I.-K., Ng, C.-P., Wang, J., Chu, B., Yuan, C., Zhang, S., & Pun, S. H. (2008). Determination of nanoparticle vehicle unpackaging by MR imaging of a T(2) magnetic relaxation switch. Biomaterials, 29(6), 724–732. https://doi.org/10.1016/j.biomaterials.2007.10.018.

    Article  CAS  PubMed  Google Scholar 

  26. Eyk, S., Jörg, S., Chris, R., Liset, U., Wolfdietrich, M., Matthias, T., & Bernd, H. (2008). Linking proteins with anionic nanoparticles via protamine: Ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small, 4(2), 225–230. https://doi.org/10.1002/smll.200700847.

    Article  CAS  Google Scholar 

  27. Jain, T. K., Richey, J., Strand, M., Leslie-Pelecky, D. L., Flask, C. A., & Labhasetwar, V. (2008). Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials, 29(29), 4012–4021. https://doi.org/10.1016/j.biomaterials.2008.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan, D., Caruthers, S. D., Hu, G., Senpan, A., Scott, M. J., Gaffney, P. J., Wickline, S. A., & Lanza, G. M. (2008). Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets. Journal of the American Chemical Society, 130(29), 9186–9187. https://doi.org/10.1021/ja801482d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gunn, J., Wallen, H., Veiseh, O., Sun, C., Fang, C., Cao, J., Yee, C., & Zhang, M. (2008). A multimodal targeting nanoparticle for selectively labeling T cells. Small, 4(6), 712–715. https://doi.org/10.1002/smll.200701103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862–3875. https://doi.org/10.1039/C3CS35405A.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679–3698. https://doi.org/10.1039/C2CS15308D.

    Article  CAS  PubMed  Google Scholar 

  32. Tae-Jong, Y., Nam, Y. K., Eunha, K., Sung, K. J., Geol, K. B., Sang-Hyun, Y., Byeong-Hyeok, S., Myung-Haing, C., Jin-Kyu, L., & Bum, P. S. (2006). Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small, 2(2), 209–215. https://doi.org/10.1002/smll.200500360.

    Article  CAS  Google Scholar 

  33. Tallury, P., Payton, K., & Santra, S. (2008). Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine, 3(4), 579–592. https://doi.org/10.2217/17435889.3.4.579.

    Article  CAS  PubMed  Google Scholar 

  34. Koole, R., van Schooneveld, M. M., Hilhorst, J., Castermans, K., Cormode, D. P., Strijkers, G. J., de Mello Donegá, C., Vanmaekelbergh, D., Griffioen, A. W., Nicolay, K., Fayad, Z. A., Meijerink, A., & Mulder, W. J. M. (2008). Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: A new contrast agent platform for multimodality imaging. Bioconjugate Chemistry, 19(12), 2471–2479. https://doi.org/10.1021/bc800368x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, F., Chen, X., Zhao, Z., Tang, S., Huang, X., Lin, C., Cai, C., & Zheng, N. (2011). Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. Journal of Materials Chemistry, 21(30), 11244–11252. https://doi.org/10.1039/C1JM10329F.

    Article  CAS  Google Scholar 

  36. Giersig, M., & Mulvaney, P. (1993). Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 9(12), 3408–3413. https://doi.org/10.1021/la00036a014.

    Article  CAS  Google Scholar 

  37. Haynes, W. M. (2014). CRC handbook of chemistry and physics. Boca Raton, FL: CRC.

    Google Scholar 

  38. Hou, W., Dasog, M., & Scott, R. W. J. (2009). Probing the relative stability of thiolate- and dithiolate-protected au monolayer-protected clusters. Langmuir, 25(22), 12954–12961. https://doi.org/10.1021/la9018053.

    Article  CAS  PubMed  Google Scholar 

  39. Roux, S., Garcia, B., Bridot, J.-L., Salomé, M., Marquette, C., Lemelle, L., Gillet, P., Blum, L., Perriat, P., & Tillement, O. (2005). Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir, 21(6), 2526–2536. https://doi.org/10.1021/la048082i.

    Article  CAS  PubMed  Google Scholar 

  40. Pérez-Rentero, S., Grijalvo, S., Peñuelas, G., Fàbrega, C., & Eritja, R. (2014). Thioctic acid derivatives as building blocks to incorporate DNA oligonucleotides onto gold nanoparticles. Molecules, 19(7), 10495. https://doi.org/10.3390/molecules190710495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oh, E., Susumu, K., Mäkinen, A. J., Deschamps, J. R., Huston, A. L., & Medintz, I. L. (2013). Colloidal stability of gold nanoparticles coated with multithiol-poly(ethylene glycol) ligands: Importance of structural constraints of the sulfur anchoring groups. The Journal of Physical Chemistry C, 117(37), 18947–18956. https://doi.org/10.1021/jp405265u.

    Article  CAS  Google Scholar 

  42. Gehan, H., Fillaud, L., Felidj, N., Aubard, J., Lang, P., Chehimi, M. M., & Mangeney, C. (2010). A general approach combining diazonium salts and click chemistries for gold surface functionalization by nanoparticle assemblies. Langmuir, 26(6), 3975–3980. https://doi.org/10.1021/la9033436.

    Article  CAS  PubMed  Google Scholar 

  43. WangWang, L. J., Fan, Q., Suzuki, M., Suzuki, I. S., Engelhard, M. H., Lin, Y., Kim, N., Wang, J. Q., & Zhong, C.-J. (2005). Monodispersed core–shell Fe3O4@Au nanoparticles. The Journal of Physical Chemistry B, 109(46), 21593–21601. https://doi.org/10.1021/jp0543429.

    Article  CAS  Google Scholar 

  44. Bao, J., Chen, W., Liu, T., Zhu, Y., Jin, P., Wang, L., Liu, J., Wei, Y., & Li, Y. (2007). Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano, 1(4), 293–298. https://doi.org/10.1021/nn700189h.

    Article  CAS  PubMed  Google Scholar 

  45. Fraum, T. J., Ludwig, D. R., Bashir, M. R., & Fowler, K. J. (2017). Gadolinium-based contrast agents: A comprehensive risk assessment. Journal of Magnetic Resonance Imaging, 46(2), 338–353. https://doi.org/10.1002/jmri.25625.

    Article  PubMed  Google Scholar 

  46. Zhang, G., Zhang, R., Wen, X., Li, L., & Li, C. (2008). Micelles based on biodegradable poly(l-glutamic acid)-b-polylactide with paramagnetic Gd ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system. Biomacromolecules, 9(1), 36–42. https://doi.org/10.1021/bm700713p.

    Article  CAS  PubMed  Google Scholar 

  47. Shiraishi, K., Kawano, K., Minowa, T., Maitani, Y., & Yokoyama, M. (2009). Preparation and in vivo imaging of PEG-poly(L-lysine)-based polymeric micelle MRI contrast agents. Journal of Controlled Release, 136(1), 14–20. https://doi.org/10.1016/j.jconrel.2009.01.010.

    Article  CAS  PubMed  Google Scholar 

  48. Chan, M., Lux, J., Nishimura, T., Akiyoshi, K., & Almutairi, A. (2015). Long-lasting and efficient tumor imaging using a high relaxivity polysaccharide nanogel magnetic resonance imaging contrast agent. Biomacromolecules, 16(9), 2964–2971. https://doi.org/10.1021/acs.biomac.5b00867.

    Article  CAS  PubMed  Google Scholar 

  49. Guo, C., Hu, J., Bains, A., Pan, D., Luo, K., Li, N., & Gu, Z. (2016). The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. Journal of Materials Chemistry B, 4(13), 2322–2331. https://doi.org/10.1039/C5TB02709H.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, H., Li, L., Liu, X. L., Jiao, J., Ng, C.-T., Yi, J. B., Luo, Y. E., Bay, B.-H., Zhao, L. Y., Peng, M. L., Gu, N., & Fan, H. M. (2017). Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS Nano, 11(4), 3614–3631. https://doi.org/10.1021/acsnano.6b07684.

    Article  CAS  PubMed  Google Scholar 

  51. Peng, S., Wang, C., Xie, J., & Sun, S. (2006). Synthesis and stabilization of monodisperse Fe nanoparticles. Journal of the American Chemical Society, 128(33), 10676–10677. https://doi.org/10.1021/ja063969h.

    Article  CAS  PubMed  Google Scholar 

  52. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110. https://doi.org/10.1021/cr068445e.

    Article  CAS  PubMed  Google Scholar 

  53. LaConte, L. E. W., Nitin, N., Zurkiya, O., Caruntu, D., O’Connor, C. J., Hu, X., & Bao, G. (2007). Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. Journal of Magnetic Resonance Imaging, 26(6), 1634–1641. https://doi.org/10.1002/jmri.21194.

    Article  PubMed  Google Scholar 

  54. Duan, H., Kuang, M., Wang, X., Wang, Y. A., Mao, H., & Nie, S. (2008). Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: New insights into spin disorder and proton relaxivity. The Journal of Physical Chemistry C, 112(22), 8127–8131. https://doi.org/10.1021/jp8029083.

    Article  CAS  Google Scholar 

  55. Gillich, T., Acikgöz, C., Isa, L., Schlüter, A. D., Spencer, N. D., & Textor, M. (2013). PEG-stabilized core–shell nanoparticles: Impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. ACS Nano, 7(1), 316–329. https://doi.org/10.1021/nn304045q.

    Article  CAS  PubMed  Google Scholar 

  56. Lalatonne, Y., Paris, C., Serfaty, J. M., Weinmann, P., Lecouvey, M., & Motte, L. (2008). Bis-phosphonates-ultra small superparamagnetic iron oxide nanoparticles: A platform towards diagnosis and therapy. Chemical Communications, (22), 2553–2555. https://doi.org/10.1039/B801911H.

  57. Barrera, C., Herrera, A. P., Bezares, N., Fachini, E., Olayo-Valles, R., Hinestroza, J. P., & Rinaldi, C. (2012). Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. Journal of Colloid and Interface Science, 377(1), 40–50. https://doi.org/10.1016/j.jcis.2012.03.050.

    Article  CAS  PubMed  Google Scholar 

  58. Biju, V., Itoh, T., & Ishikawa, M. (2010). Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews, 39(8), 3031–3056. https://doi.org/10.1039/B926512K.

    Article  CAS  PubMed  Google Scholar 

  59. Bilan, R., Fleury, F., Nabiev, I., & Sukhanova, A. (2015). Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjugate Chemistry, 26(4), 609–624. https://doi.org/10.1021/acs.bioconjchem.5b00069.

    Article  CAS  PubMed  Google Scholar 

  60. Banerjee, A., Grazon, C., Nadal, B., Pons, T., Krishnan, Y., & Dubertret, B. (2015). Fast, efficient, and stable conjugation of multiple DNA strands on colloidal quantum dots. Bioconjugate Chemistry, 26(8), 1582–1589. https://doi.org/10.1021/acs.bioconjchem.5b00221.

    Article  CAS  PubMed  Google Scholar 

  61. Paquet, C., Ryan, S., Zou, S., Kell, A., Tanha, J., Hulse, J., Tay, L.-L., & Simard, B. (2012). Multifunctional nanoprobes for pathogen-selective capture and detection. Chemical Communications, 48(4), 561–563. https://doi.org/10.1039/C1CC16245D.

    Article  CAS  PubMed  Google Scholar 

  62. Hong, G., Diao, S., Antaris, A. L., & Dai, H. (2015). Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 115(19), 10816–10906. https://doi.org/10.1021/acs.chemrev.5b00008.

    Article  CAS  PubMed  Google Scholar 

  63. Karousis, N., Suarez-Martinez, I., Ewels, C. P., & Tagmatarchis, N. (2016). Structure, properties, functionalization, and applications of carbon nanohorns. Chemical Reviews, 116(8), 4850–4883. https://doi.org/10.1021/acs.chemrev.5b00611.

    Article  CAS  PubMed  Google Scholar 

  64. Marco, F., Roberto, M., Lyn, M., Kevin, F., Valentina, S., Giacomo, C., Luis, E., Eoin, M. S., & Silvia, G. (2015). Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry – A European Journal, 21(52), 19071–19080. https://doi.org/10.1002/chem.201503166.

    Article  CAS  Google Scholar 

  65. Biju, V. (2014). Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 43(3), 744–764. https://doi.org/10.1039/C3CS60273G.

    Article  CAS  PubMed  Google Scholar 

  66. Amstad, E., Zurcher, S., Mashaghi, A., Wong, J. Y., Textor, M., & Reimhult, E. (2009). Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small, 5(11), 1334–1342. https://doi.org/10.1002/smll.200801328.

    Article  CAS  PubMed  Google Scholar 

  67. Mahato, R. I. (2004). Biomaterials for delivery and targeting of proteins and nucleic acids. Boca Raton, FL: CRC.

    Book  Google Scholar 

  68. Fuertges, F., & Abuchowski, A. (1990). The clinical efficacy of poly(ethylene glycol)-modified proteins. Journal of Controlled Release, 11(1), 139–148. https://doi.org/10.1016/0168-3659(90)90127-F.

    Article  CAS  Google Scholar 

  69. Xie, J., Xu, C., Kohler, N., Hou, Y., & Sun, S. (2007). Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Advanced Materials, 19(20), 3163–3166. https://doi.org/10.1002/adma.200701975.

    Article  CAS  Google Scholar 

  70. Harris, J. M., & Chess, R. B. (2003). Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2, 214. https://doi.org/10.1038/nrd1033.

    Article  CAS  PubMed  Google Scholar 

  71. Chen, X., Zhang, W., Laird, J., Hazen, S. L., & Salomon, R. G. (2008). Polyunsaturated phospholipids promote the oxidation and fragmentation of γ-hydroxyalkenals: Formation and reactions of oxidatively truncated ether phospholipids. Journal of Lipid Research, 49(4), 832–846. https://doi.org/10.1194/jlr.M700598-JLR200.

    Article  CAS  PubMed  Google Scholar 

  72. Papisov, M. I., Bogdanov, A., Schaffer, B., Nossiff, N., Shen, T., Weissleder, R., & Brady, T. J. (1993). Colloidal magnetic resonance contrast agents: Effect of particle surface on biodistribution. Journal of Magnetism and Magnetic Materials, 122(1), 383–386. https://doi.org/10.1016/0304-8853(93)91115-N.

    Article  CAS  Google Scholar 

  73. Lutz, J.-F., Stiller, S., Hoth, A., Kaufner, L., Pison, U., & Cartier, R. (2006). One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules, 7(11), 3132–3138. https://doi.org/10.1021/bm0607527.

    Article  CAS  PubMed  Google Scholar 

  74. Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., & Gu, Z. (2013). Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 3(8), 595–615. https://doi.org/10.7150/thno.5366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma, Y., Tong, S., Bao, G., Gao, C., & Dai, Z. (2013). Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials, 34(31), 7706–7714. https://doi.org/10.1016/j.biomaterials.2013.07.007.

    Article  CAS  PubMed  Google Scholar 

  76. Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S., Gonzalez-Carreño, T., & Serna, C. J. (2006). Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of Magnetic Materials, 16(5), 403–482.

    CAS  Google Scholar 

  77. Weissleder, R., Elizondo, G., Wittenberg, J., Lee, A. S., Josephson, L., & Brady, T. J. (1990). Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology, 175(2), 494–498. https://doi.org/10.1148/radiology.175.2.2326475.

    Article  CAS  PubMed  Google Scholar 

  78. Molday, R. S., & Mackenzie, D. (1982). Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of Immunological Methods, 52(3), 353–367. https://doi.org/10.1016/0022-1759(82)90007-2.

    Article  CAS  PubMed  Google Scholar 

  79. Josephson, L., Tung, C.-H., Moore, A., & Weissleder, R. (1999). High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chemistry, 10(2), 186–191. https://doi.org/10.1021/bc980125h.

    Article  CAS  PubMed  Google Scholar 

  80. Tassa, C., Shaw, S. Y., & Weissleder, R. (2011). Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of Chemical Research, 44(10), 842–852. https://doi.org/10.1021/ar200084x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wunderbaldinger, P., Josephson, L., & Weissleder, R. (2002). Crosslinked iron oxides (CLIO): A new platform for the development of targeted MR contrast agents. Academic Radiology, 9(Suppl 2), S304–S306.

    Article  PubMed  Google Scholar 

  82. McCarthy, J. R., & Weissleder, R. (2008). Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Reviews, 60(11), 1241–1251. https://doi.org/10.1016/j.addr.2008.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mornet, S., Portier, J., & Duguet, E. (2005). A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. Journal of Magnetism and Magnetic Materials, 293(1), 127–134. https://doi.org/10.1016/j.jmmm.2005.01.053.

    Article  CAS  Google Scholar 

  84. Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104(12), 6017–6084. https://doi.org/10.1021/cr030441b.

    Article  PubMed  Google Scholar 

  85. Janes, K. A., Calvo, P., & Alonso, M. J. (2001). Polysaccharide colloidal particles as delivery systems for macromolecules. Advanced Drug Delivery Reviews, 47(1), 83–97. https://doi.org/10.1016/S0169-409X(00)00123-X.

    Article  CAS  PubMed  Google Scholar 

  86. Bhattarai, S. R., Kim, S. Y., Jang, K. Y., Lee, K. C., Yi, H. K., Lee, D. Y., Kim, H. Y., & Hwang, P. H. (2008). Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. Journal of Virological Methods, 147(2), 213–218. https://doi.org/10.1016/j.jviromet.2007.08.028.

    Article  CAS  PubMed  Google Scholar 

  87. Hee Kim, E., Sook Lee, H., Kook Kwak, B., & Kim, B.-K. (2005). Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 289, 328–330. https://doi.org/10.1016/j.jmmm.2004.11.093.

    Article  CAS  Google Scholar 

  88. Kim, M.-J., Jang, D.-H., Lee, Y.-I., Jung, H. S., Lee, H.-J., & Choa, Y.-H. (2011). Preparation, characterization, cytotoxicity and drug release behavior of liposome-enveloped paclitaxel/Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 11(1), 889–893. https://doi.org/10.1166/jnn.2011.3267.

    Article  CAS  PubMed  Google Scholar 

  89. Martina, M.-S., Fortin, J.-P., Ménager, C., Clément, O., Barratt, G., Grabielle-Madelmont, C., Gazeau, F., Cabuil, V., & Lesieur, S. (2005). Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Journal of the American Chemical Society, 127(30), 10676–10685. https://doi.org/10.1021/ja0516460.

    Article  CAS  PubMed  Google Scholar 

  90. Yang, J., Lee, T.-I., Lee, J., Lim, E.-K., Hyung, W., Lee, C.-H., Song, Y. J., Suh, J.-S., Yoon, H.-G., Huh, Y.-M., & Haam, S. (2007). Synthesis of ultrasensitive magnetic resonance contrast agents for cancer imaging using PEG-fatty acid. Chemistry of Materials, 19(16), 3870–3876. https://doi.org/10.1021/cm070495s.

    Article  CAS  Google Scholar 

  91. De Cuyper, M., & Joniau, M. (1988). Magnetoliposomes. European Biophysics Journal, 15(5), 311–319. https://doi.org/10.1007/bf00256482.

    Article  PubMed  Google Scholar 

  92. Mulder, W. J. M., Strijkers, G. J., van Tilborg, G. A. F., Griffioen, A. W., & Nicolay, K. (2006). Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR in Biomedicine, 19(1), 142–164. https://doi.org/10.1002/nbm.1011.

    Article  CAS  PubMed  Google Scholar 

  93. Dagata, J. A., Farkas, N., Dennis, C. L., Shull, R. D., Hackley, V. A., Yang, C., Pirollo, K. F., & Chang, E. H. (2008). Physical characterization methods for iron oxide contrast agents encapsulated within a targeted liposome-based delivery system. Nanotechnology, 19(30), 305101.

    Article  CAS  PubMed  Google Scholar 

  94. Veiseh, O., Kievit, F. M., Gunn, J. W., Ratner, B. D., & Zhang, M. (2009). A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials, 30(4), 649–657. https://doi.org/10.1016/j.biomaterials.2008.10.003.

    Article  CAS  PubMed  Google Scholar 

  95. Kievit, F. M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J. W., Lee, D., Ellenbogen, R. G., Olson, J. M., & Zhang, M. (2009). PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: Synthesis, complexation, and transfection. Advanced Functional Materials, 19(14), 2244–2251. https://doi.org/10.1002/adfm.200801844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guo, M., Yan, Y., Zhang, H., Yan, H., Cao, Y., Liu, K., Wan, S., Huang, J., & Yue, W. (2008). Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery. Journal of Materials Chemistry, 18(42), 5104–5112. https://doi.org/10.1039/B810061F.

    Article  CAS  Google Scholar 

  97. Thünemann, A. F., Schütt, D., Kaufner, L., Pison, U., & Möhwald, H. (2006). Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir, 22(5), 2351–2357. https://doi.org/10.1021/la052990d.

    Article  CAS  PubMed  Google Scholar 

  98. Bulte, J. W. M., de Cuyper, M., Despres, D., & Frank, J. A. (1999). Short- vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. Journal of Magnetic Resonance Imaging, 9(2), 329–335. https://doi.org/10.1002/(SICI)1522-2586(199902)9:2<329::AID-JMRI27>3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  99. Xiang, J. J., Tang, J. Q., Zhu, S. G., Nie, X. M., Lu, H. B., Shen, S. R., Li, X. L., Tang, K., Zhou, M., & Li, G. Y. (2003). IONP-PLL: A novel non-viral vector for efficient gene delivery. The Journal of Gene Medicine, 5(9), 803–817. https://doi.org/10.1002/jgm.419.

    Article  CAS  PubMed  Google Scholar 

  100. Nicollay, K., Strijkers, G. and Grull, H. (2013). Gd-Containing Nanoparticles as MRI Contrast Agents. In The Chemistryof Contrast Agents in Medical Magnetic Resonance Imaging (eds A. Merbach, L. Helm and E. Toth). https://doi.org/10.1002/9781118503652.ch11.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azam Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M.A., Islam, M.T. (2019). Surface Modification and Bioconjugation of Nanoparticles for MRI Technology. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_21

Download citation

Publish with us

Policies and ethics