Skip to main content

Polydopamine-Based Simple and Versatile Surface Modification of Polymeric Nano Drug Carriers

  • Chapter
  • First Online:
Surface Modification of Nanoparticles for Targeted Drug Delivery

Abstract

The surface modification of polymeric nanoparticle (NP) with bioactive ligands and/or secondary polymeric layers is a common strategy to govern the interaction of NPs with cells, proteins, and other biomolecules. But such surface engineering is not always so simple when the surface is chemically nonreactive. Because of this, NP surface modification processes generally employ reactive connector or coupling agents or prefunctionalization of the polymer, which are very tricky and ineffective. However, prefunctionalization of polymers can reduce the ability of drug encapsulation efficiency if the inserted ligands hamper the chemical properties of the polymer. To solve this issue, scientists have discovered a method of dopamine polymerization as a way of NP surfaces functionalization. In brief, this method involves the incubation of raw NPs in a weak alkaline solution of dopamine and subsequent incubation with ligands. This reaction furnishes a universal coating of polydopamine for metals, polymers, and ceramics, irrespective of their physicochemical characteristics. Polydopamine-based surface modified nanomaterials emerge as novel nanocomposite and get the interests in the area of drug delivery and therapy because of their unique physicochemical features, such as multifaceted adhesive property, great chemical reactivity, exceptional biocompatibility and biodegradability, and strong photothermal conversion capacity. This chapter highlights the recent development of polydopamine-based surface modified polymeric nanoparticles for smart drug delivery and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, R., Huang, C., & Tseng, Y. (1999, November). Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: Is surface coating with polyethylene glycol beneficial? Direct comparison of liposomal doxorubicin with or without polyethylene glycol coa. Clinical Cancer Research, 5, 3645–3652.

    CAS  PubMed  Google Scholar 

  2. Hatakeyama, H., Akita, H., & Harashima, H. (2011). A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 63(3), 152–160.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, D., Kim, E., Kim, J., Park, K. M., Baek, K., Jung, M., Ko, Y. H., Sung, W., Kim, H. S., Suh, J. H., Park, C. G., Na, O. S., Lee, D. K., Lee, K. E., Han, S. S., & Kim, K. (2007). Direct synthesis of polymer nanocapsules with a noncovalently tailorable surface. Angewandte Chemie, International Edition, 46(19), 3471–3474.

    Article  CAS  Google Scholar 

  4. Kim, E., Kim, D., Jung, H., Lee, J., Paul, S., Selvapalam, N., Yang, Y., Lim, N., Park, C. G., & Kim, K. (2010). Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angewandte Chemie, International Edition, 49(26), 4405–4408.

    Article  CAS  Google Scholar 

  5. Liang, K., Such, G. K., Zhu, Z., Yan, Y., Lomas, H., & Caruso, F. (2011). Charge-shifting click capsules with dual-responsive cargo release mechanisms. Advanced Materials, 23(36), 273–277.

    Article  CAS  Google Scholar 

  6. Yan, Y., Wang, Y., Heath, J. K., Nice, E. C., & Caruso, F. (2011). Cellular association and cargo release of redox-responsive polymer capsules mediated by exofacial thiols. Advanced Materials, 23(34), 3916–3921.

    Article  CAS  PubMed  Google Scholar 

  7. Ochs, C. J., Such, G. K., Yan, Y., Van Koeverden, M. P., & Caruso, F. (2010). Biodegradable click capsules with engineered drug-loaded multilayers. ACS Nano, 4(3), 1653–1663.

    Article  CAS  PubMed  Google Scholar 

  8. Sahoo, S. K., & Labhasetwar, V. (2005). Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Molecular Pharmaceutics, 2(5), 373–383.

    Article  CAS  PubMed  Google Scholar 

  9. Rao, K. S., Reddy, M. K., Horning, J. L., & Labhasetwar, V. (2008). TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials, 29(33), 4429–4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narayanan, S., Binulal, N. S., Mony, U., Manzoor, K., Nair, S., & Menon, D. (2010). Folate targeted polymeric ‘green’ nanotherapy for cancer. Nanotechnology, 21(28), 1–13.

    Article  CAS  Google Scholar 

  11. Mo, Y., & Lim, L. Y. (2005). Paclitaxel-loaded PLGA nanoparticles: Potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. Journal of Controlled Release, 108(2–3), 244–262.

    Article  CAS  PubMed  Google Scholar 

  12. Gu, F., Zhang, L., Teply, B. A., Mann, N., Wang, A., Radovic-Moreno, A. F., Langer, R., & Farokhzad, O. C. (2008). Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences, 105(7), 2586–2591.

    Article  CAS  Google Scholar 

  13. Hrkach, J., Von Hoff, D., Ali, M. M., Andrianova, E., Auer, J., Campbell, T., De Witt, D., Figa, M., Figueiredo, M., Horhota, A., Low, S., McDonnell, K., Peeke, E., Retnarajan, B., Sabnis, A., Schnipper, E., Song, J. J., Song, Y. H., Summa, J., Tompsett, D., Troiano, G., Hoven, T. V. G., Wright, J., LoRusso, P., Kantoff, P. W., Bander, N. H., Sweeney, C., Farokhzad, O. C., Langer, R., & Zale, S. (2012). Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Science Translational Medicine, 4(128), 1–11.

    Article  Google Scholar 

  14. Tosi, G., Costantino, L., Rivasi, F., Ruozi, B., Leo, E., Vergoni, A. V., Tacchi, R., Bertolini, A., Vandelli, M. A., & Forni, F. (2007). Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. Journal of Controlled Release, 122(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Flenberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C., Nairn, A. C., & Greengard, P. (1999). Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 402(6762), 669–671.

    Article  CAS  PubMed  Google Scholar 

  16. d’Ischia, M., Napolitano, A., Ball, V., Chen, C.-T., & Buehler, M. J. (2014). Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Accounts of Chemical Research, 47(12), 3541–3550.

    Article  PubMed  CAS  Google Scholar 

  17. Cui, X., Yin, Y., Ma, Z., Yin, Y., Guan, Y., Rong, S., Gao, J., Niu, Y., & Li, M. (2015). Polydopamine used as hollow capsule and core–shell structures for multiple applications. Nano, 10(05), 1530003-1–1530003-23.

    Article  CAS  Google Scholar 

  18. Lynge, M. E., Van Der Westen, R., Postma, A., & Städler, B. (2011). Polydopamine – A nature-inspired polymer coating for biomedical science. Nanoscale, 3(12), 4916–4928.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057–5115.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings haeshin. Science, 318(5849), 426–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, H., Rho, J., & Messersmith, P. B. (2009). Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 21(4), 431–434.

    Article  CAS  PubMed  Google Scholar 

  22. Dreyer, D. R., Miller, D. J., Freeman, B. D., Paul, D. R., & Bielawski, C. W. (2013). Perspectives on poly(dopamine). Chemical Science, 4(10), 3796–3802.

    Article  CAS  Google Scholar 

  23. D’Ischia, M., Napolitano, A., Ball, V., Chen, C. T., & Buehler, M. J. (2014). Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Accounts of Chemical Research, 47(12), 3541–3550.

    Article  PubMed  CAS  Google Scholar 

  24. Wu, T. F., & Hong, J. D. (2016). Synthesis of water-soluble dopamine-melanin for ultrasensitive and ultrafast humidity sensor. Sensors Actuators, B Chemical, 224, 178–184.

    Article  CAS  Google Scholar 

  25. Watt, A. A. R., Bothma, J. P., & Meredith, P. (2009). The supramolecular structure of melanin. Soft Matter, 5(19), 3754–3760.

    Article  CAS  Google Scholar 

  26. Yu, B., Liu, J., Liu, S., & Zhou, F. (2010). Pdop layer exhibiting zwitterionicity: A simple electrochemical interface for governing ion permeability. Chemical Communications, 46(32), 5900–5902.

    Article  CAS  PubMed  Google Scholar 

  27. Fyodor, N., Vecchia, D., Luchini, A., Napolitano, A., Errico, G. D., Vitiello, G., Szekely, N., Ischia, M., Paduano, L., Ii, F., & Tecchio, P. V. (2014). Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 30(32), 9811–9818.

    Article  CAS  Google Scholar 

  28. Zheng, W., Fan, H., Wang, L., & Jin, Z. (2015). Oxidative self-polymerization of dopamine in an acidic environment. Langmuir, 31(42), 11671–11677.

    Article  CAS  PubMed  Google Scholar 

  29. Barreto, W. J., Ponzoni, S., & Sassi, P. (1998). A Raman and UV-Vis study of catecholamines oxidized with Mn(III). Spectrochimica Acta, Part A, 55(1), 65–72.

    Article  Google Scholar 

  30. Tsai, W. B., Chien, C. Y., Thissen, H., & Lai, J. Y. (2011). Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions. Acta Biomaterialia, 7(6), 2518–2525.

    Article  CAS  PubMed  Google Scholar 

  31. Coyne, K. J., Qin, X. X., & Waite, J. H. (1997). Extensible collagen in mussel byssus: A natural block copolymer. Science, 277(5333), 1830–1832.

    Article  CAS  PubMed  Google Scholar 

  32. Akemi Ooka, A., & Garrell, R. L. (2000). Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytilus edulis. Biopolymers, 57(2), 92–102.

    Article  CAS  PubMed  Google Scholar 

  33. Lee, B. P., Dalsin, J. L., & Messersmith, P. B. (2002). Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules, 3(5), 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, B. P., Chao, C. Y., Nunalee, F. N., Motan, E., Shull, K. R., & Messersmith, P. B. (2006). Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules, 39(5), 1740–1748.

    Article  CAS  Google Scholar 

  35. Zhu, B., & Edmondson, S. (2011). Polydopamine-melanin initiators for surface-initiated ATRP. Polymer, 52(10), 2141–2149.

    Article  CAS  Google Scholar 

  36. Ye, G., Lee, J., Perreault, F., & Elimelech, M. (2015). Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated ‘defending’ and ‘attacking’ strategies against biofouling. ACS Applied Materials & Interfaces, 7(41), 23069–23079.

    Article  CAS  Google Scholar 

  37. Chung, Y. C., & Huang, J. Y. (2014). Water-borne composite coatings using nanoparticles modified with dopamine derivatives. Thin Solid Films, 570(Part B), 376–382.

    Article  CAS  Google Scholar 

  38. Mostert, A. B., Powell, B. J., Pratt, F. L., Hanson, G. R., Sarna, T., Gentle, I. R., & Meredith, P. (2012). Role of semiconductivity and ion transport in the electrical conduction of melanin. Proceedings of the National Academy of Sciences, 109(23), 8943–8947.

    Article  CAS  Google Scholar 

  39. Ball, V. (2014). Physicochemical perspective on ‘polydopamine’ and ‘poly(catecholamine)’ films for their applications in biomaterial coatings. Biointerphases, 9(3), 030801-1–030801-10.

    Article  CAS  Google Scholar 

  40. Yeroslavsky, G., Girshevitz, O., Foster-Frey, J., Donovan, D. M., & Rahimipour, S. (2015). Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme. Langmuir, 31(3), 1064–1073.

    Article  CAS  PubMed  Google Scholar 

  41. Cai, T., Li, X., Wan, C., & Chung, T. S. (2016, September). Zwitterionic polymers grafted poly(ether sulfone) hollow fiber membranes and their antifouling behaviors for osmotic power generation. Journal of Membrane Science, 497, 142–152.

    Article  CAS  Google Scholar 

  42. Schaubroeck, D., Mader, L., Dubruel, P., & Vanfleteren, J. (2015). Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper. Applied Surface Science, 353, 238–244.

    Article  CAS  Google Scholar 

  43. Wang, N., Liu, Y., Qiao, Z., Diestel, L., Zhou, J., Huang, A., & Caro, J. (2015). Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. Journal of Materials Chemistry A, 3(8), 4722–4728.

    Article  CAS  Google Scholar 

  44. Fu, L., Shi, Y., Wang, K., Zhou, P., Liu, M., Wan, Q., Tao, L., Zhang, X., & Wei, Y. (2015). Biomimic modification of graphene oxide. New Journal of Chemistry, 39(10), 8172–8178.

    Article  CAS  Google Scholar 

  45. Vaish, A., Vanderah, D. J., Richter, L. J., Dimitriou, M., Steffens, K. L., & Walker, M. L. (2015). Dithiol-based modification of poly(dopamine): Enabling protein resistance via short-chain ethylene oxide oligomers. Chemical Communications, 51(30), 6591–6594.

    Article  CAS  PubMed  Google Scholar 

  46. Luo, R., Tang, L., Wang, J., Zhao, Y., Tu, Q., Weng, Y., Shen, R., & Huang, N. (2013, June). Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization. Colloids Surfaces B Biointerfaces, 106, 66–73.

    Article  CAS  PubMed  Google Scholar 

  47. Martín, M., Orive, A. G., Lorenzo-Luis, P., Creus, A. H., González-Mora, J. L., & Salazar, P. (2014). Quinone-rich poly(dopamine) magnetic nanoparticles for biosensor applications. Chemphyschem, 15(17), 3742–3752.

    Article  PubMed  CAS  Google Scholar 

  48. Yang, W. J., Neoh, K.-G., Kang, E.-T., Lay-Ming Teo, S., & Rittschof, D. (2013). Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. Polymer Chemistry, 4(10), 3105–3115.

    Article  CAS  Google Scholar 

  49. Mrówczyński, R., Nan, A., Turcu, R., Leistner, J., & Liebscher, J. (2015). Polydopamine – A versatile coating for surface-initiated ring-opening polymerization of lactide to polylactide. Macromolecular Chemistry and Physics, 216(2), 211–217.

    Article  CAS  Google Scholar 

  50. Bernsmann, F., Ponche, A., Ringwald, C., Hemmerlé, J., Raya, J., Bechinger, B., Voegel, J., Schaaf, P., & Ball, V. (2009). Characterization of dopamine−melanin growth on silicon oxide. Journal of Physical Chemistry C, 113(19), 8234–8242.

    Article  CAS  Google Scholar 

  51. Cho, J. H., Katsumata, R., Zhou, S. X., Bin Kim, C., Dulaney, A. R., Janes, D. W., & Ellison, C. J. (2016). Ultrasmooth polydopamine modified surfaces for block copolymer nanopatterning on flexible substrates. ACS Applied Materials & Interfaces, 8(11), 7456–7463.

    Article  CAS  Google Scholar 

  52. Su, L., Yu, Y., Zhao, Y., Liang, F., & Zhang, X. (2016). Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Scientific Reports, 6(24420), 1–8.

    CAS  Google Scholar 

  53. Meng, J., Xie, J., Han, X., & Lu, C. (2016, May). Surface wrinkling on polydopamine film. Applied Surface Science, 371, 96–101.

    Article  CAS  Google Scholar 

  54. Proks, V., Brus, J., Pop-Georgievski, O., Večerníková, E., Wisniewski, W., Kotek, J., Urbanová, M., & Rypáček, F. (2013). Thermal-induced transformation of polydopamine structures: An efficient route for the stabilization of the polydopamine surfaces. Macromolecular Chemistry and Physics, 214(4), 499–507.

    Article  CAS  Google Scholar 

  55. Wang, Y. R., Yang, S. Y., Chen, G. X., & Wei, P. (2018). Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo. Biochemical and Biophysical Research Communications, 499(1), 8–16.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, H., Zhu, W., Huang, Y., Li, Z., Jiang, Y., & Xie, Q. (2017, October). Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomaterialia, 61, 88–100.

    Article  CAS  PubMed  Google Scholar 

  57. Kong, N., Deng, M., Sun, X. N., Chen, Y. D., & Sui, X. B. (2018). Polydopamine-functionalized CA-(PCL-ran-PLA) nanoparticles for target delivery of docetaxel and chemo-photothermal therapy of breast cancer. Frontiers in Pharmacology, 9(125), 1–14.

    Google Scholar 

  58. Zhu, D., Tao, W., Zhang, H., Liu, G., Wang, T., Zhang, L., Zeng, X., & Mei, L. (2016, January). Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomaterialia, 30, 144–154.

    Article  CAS  PubMed  Google Scholar 

  59. Park, J., Brust, T. F., Lee, H. J., Lee, S. C., Watts, V. J., & Yeo, Y. (2014). Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 8(4), 3347–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gullotti, E., Park, J., & Yeo, Y. (2013). Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles. Pharmaceutical Research, 30(8), 1956–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sunoqrot, S., Hasan, L., Alsadi, A., Hamed, R., & Tarawneh, O. (2017, August). Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: Implications for gastro-retentive drug delivery. Colloids Surfaces B Biointerfaces, 156, 1–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ao, L., Wu, C., Liu, K., Wang, W., Fang, L., Huang, L., & Su, W. (2018). Polydopamine-derivated hierarchical nanoplatforms for efficient dual-modal imaging-guided combination in vivo cancer therapy. ACS Applied Materials & Interfaces, 10(15), 12544–12552.

    Article  CAS  Google Scholar 

  63. Amoozgar, Z., & Goldberg, M. S. (2017). Surface modulation of polymeric nanocarriers enhances the stability and delivery of proteins and small molecules. Nanomedicine, 12(7), 729–743.

    Article  CAS  PubMed  Google Scholar 

  64. Cui, J., Yan, Y., Such, G. K., Liang, K., Ochs, C. J., Postma, A., & Caruso, F. (2012). Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules, 13(8), 2225–2228.

    Article  CAS  PubMed  Google Scholar 

  65. Amoozgar, Z., Wang, L., Brandstoetter, T., Wallis, S. S., Wilson, E. M., & Goldberg, M. S. (2014). Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model. Biomacromolecules, 15(11), 4187–4194.

    Article  CAS  PubMed  Google Scholar 

  66. Nie, J., Cheng, W., Peng, Y., Liu, G., Chen, Y., Wang, X., Liang, C., Tao, W., Wei, Y., Zeng, X., & Mei, L. (2017). Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Delivery, 24(1), 1124–1138.

    Article  CAS  PubMed  Google Scholar 

  67. Bi, D., Zhao, L., Yu, R., Li, H., Guo, Y., Wang, X., & Han, M. (2018). Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Delivery, 25(1), 564–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Han, N., Pang, L., Xu, J., Hyun, H., Park, J., & Yeo, Y. (2017). Development of surface-variable polymeric nanoparticles for drug delivery to tumors. Molecular Pharmaceutics, 14(5), 1538–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tao, W., Zeng, X., Wu, J., Zhu, X., Yu, X., Zhang, X., Zhang, J., Liu, G., & Mei, L. (2016). Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 6(4), 470–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Park, J., Kadasala, N. R., Abouelmagd, S. A., Castanares, M. A., David, S., Wei, A., Yeo, Y., Pharmacy, P., Lafayette, W., Lilly, E., Lafayette, W., & Lafayette, W. (2016, September). Polymer–iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials, 101, 285–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abouelmagd, S. A., Ku, Y. J., Yeo, Y., Pharmacy, P., Lafayette, W., & Lafayette, W. (2015). Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. Journal of Drug Targeting, 23(7–8), 725–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, Y., Deng, Y., Ye, Z., Liang, S., Tang, Z., & Wei, S. (2013, November). Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating. Colloids Surfaces B Biointerfaces, 111, 107–116.

    Article  CAS  PubMed  Google Scholar 

  73. Dreyer, D. R., Miller, D. J., Freeman, B. D., Paul, D. R., & Bielawski, C. W. (2012). Elucidating the structure of poly(dopamine). Langmuir, 28(15), 6428–6435.

    Article  CAS  PubMed  Google Scholar 

  74. Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., & Lee, H. (2012). Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 22(22), 4711–4717.

    Article  CAS  Google Scholar 

  75. Liebscher, J., Mrówczyński, R., Scheidt, H. A., Filip, C., Haìdade, N. D., Turcu, R., Bende, A., & Beck, S. (2013). Structure of polydopamine: A never-ending story? Langmuir, 29(33), 10539–10548.

    Article  CAS  PubMed  Google Scholar 

  76. Ye, Q., Zhou, F., & Liu, W. (2011). Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 40(7), 4244–4258.

    Article  CAS  PubMed  Google Scholar 

  77. Leng, C., Liu, Y., Jenkins, C., Meredith, H., Wilker, J. J., & Chen, Z. (2013). Interfacial structure of a DOPA-inspired adhesive polymer studied by sum frequency generation vibrational spectroscopy. Langmuir, 29(22), 6659–6664.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, Y., Thingholm, B., Goldie, K. N., Ogaki, R., & Städler, B. (2012). Assembly of poly(dopamine) films mixed with a nonionic polymer. Langmuir, 28(51), 17585–17592.

    Article  CAS  PubMed  Google Scholar 

  79. Lee, H., Scherer, N. F., & Messersmith, P. B. (2006). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103(35), 12999–13003.

    Article  CAS  Google Scholar 

  80. Zhou, R., Ren, P. F., Yang, H. C., & Xu, Z. K. (2014, September). Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 466, 18–25.

    Article  CAS  Google Scholar 

  81. Ren, P. F., Yang, H. C., Jin, Y. N., Liang, H. Q., Wan, L. S., & Xu, Z. K. (2015). Underwater superoleophobic meshes fabricated by poly(sulfobetaine)/polydopamine co-deposition. RSC Advances, 5(59), 47592–47598.

    Article  CAS  Google Scholar 

  82. Ren, P. F., Yang, H. C., Liang, H. Q., Xu, X. L., Wan, L. S., & Xu, Z. K. (2015). Highly stable, protein-resistant surfaces via the layer-by-layer assembly of poly(sulfobetaine methacrylate) and tannic acid. Langmuir, 31(21), 5851–5858.

    Article  CAS  PubMed  Google Scholar 

  83. Chang, C. C., Kolewe, K. W., Li, Y., Kosif, I., Freeman, B. D., Carter, K. R., Schiffman, J. D., & Emrick, T. (2016). Underwater superoleophobic surfaces prepared from polymer zwitterion/dopamine composite coatings. Advanced Materials Interfaces, 3(6), 1–9.

    Article  CAS  Google Scholar 

  84. Yang, H. C., Liao, K. J., Huang, H., Wu, Q. Y., Wan, L. S., & Xu, Z. K. (2014). Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2(26), 10225–10230.

    Article  CAS  Google Scholar 

  85. Yang, H. C., Xu, W., Du, Y., Wu, J., & Xu, Z. K. (2014). Composite free-standing films of polydopamine/polyethyleneimine grown at the air/water interface. RSC Advances, 4(85), 45415–45418.

    Article  CAS  Google Scholar 

  86. Zhao, C., Zuo, F., Liao, Z., Qin, Z., Du, S., & Zhao, Z. (2015). Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromolecular Rapid Communications, 36(10), 909–915.

    Article  CAS  PubMed  Google Scholar 

  87. Quan, S., Li, S., Wang, Z., Yan, X., Guo, Z., & Shao, L. (2015). A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation. Journal of Materials Chemistry A, 3(26), 13758–13766.

    Article  CAS  Google Scholar 

  88. Karkhanechi, H., Takagi, R., & Matsuyama, H. (2014). Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization. Desalination, 337(1), 23–30.

    Article  CAS  Google Scholar 

  89. Wu, T. F., & Hong, J. D. (2015). Dopamine-melanin nanofilms for biomimetic structural coloration. Biomacromolecules, 16(2), 660–666.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, C., Lv, Y., Qiu, W. Z., He, A., & Xu, Z. K. (2017). Polydopamine coatings with nanopores for versatile molecular separation. ACS Applied Materials & Interfaces, 9(16), 14437–14444.

    Article  CAS  Google Scholar 

  91. Zhang, L., Shi, J., Jiang, Z., Jiang, Y., Qiao, S., Li, J., Wang, R., Meng, R., Zhu, Y., & Zheng, Y. (2011). Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chemistry, 13(2), 300–306.

    Article  CAS  Google Scholar 

  92. Ball, V., Del Frari, D., Toniazzo, V., & Ruch, D. (2012). Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. Journal of Colloid and Interface Science, 386(1), 366–372.

    Article  CAS  PubMed  Google Scholar 

  93. Shin, Y. M., Jun, I., Lim, Y. M., Rhim, T., & Shin, H. (2013). Bio-inspired immobilization of cell-adhesive ligands on electrospun nanofibrous patches for cell delivery. Macromolecular Materials and Engineering, 298(5), 555–564.

    Article  CAS  Google Scholar 

  94. Zhou, P., Deng, Y., Lyu, B., Zhang, R., Zhang, H., Ma, H., Lyu, Y., & Wei, S. (2014). Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: Formation, characterization and biofunctional evaluation. PLoS One, 9(11), 1–10.

    Google Scholar 

  95. Sheng, W., Li, B., Wang, X., Dai, B., Yu, B., Jia, X., & Zhou, F. (2015). Brushing up from ‘anywhere’ under sunlight: A universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science, 6(3), 2068–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ball, V. (2010). Impedance spectroscopy and zeta potential titration of dopa-melanin films produced by oxidation of dopamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363(1–3), 92–97.

    Article  CAS  Google Scholar 

  97. Mack, F., & Bönisch, H. (1979). Dissociation constants and lipophilicity of catecholamines and related compounds. Naunyn-Schmiedeberg’s Archives of Pharmacology, 310(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  98. Klosterman, L., Riley, J. K., & Bettinger, C. J. (2015). Control of heterogeneous nucleation and growth kinetics of dopamine-melanin by altering substrate chemistry. Langmuir, 31(11), 3451–3458.

    Article  CAS  PubMed  Google Scholar 

  99. Xiong, W., Peng, L., Chen, H., & Li, Q. (2015). Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. International Journal of Nanomedicine, 10, 2985–2996.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Declaration

All figures and tables are original and self-made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M.K., Sarma, A., Deka, T. (2019). Polydopamine-Based Simple and Versatile Surface Modification of Polymeric Nano Drug Carriers. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_19

Download citation

Publish with us

Policies and ethics