Skip to main content

Surface Modification of Resorcinarene-Based Self-Assembled Solid Lipid Nanoparticles for Drug Targeting

  • Chapter
  • First Online:
Surface Modification of Nanoparticles for Targeted Drug Delivery

Abstract

Supramolecular chemistry associates the dual concepts of self-arranging and molecular perception to generate novel nanocarrier systems. Nanoparticles have numerous benefits over other drug delivery carriers. Solid lipid nanoparticles (SLNs) have acquired significant attention as a potential substitutive carrier system to usual colloidal carriers like liposomes, emulsion, as well as polymeric nanoparticles. SLNs are the novel fundamental approaches to alter the oral bioavailability problems of the poorly aqueous soluble drug. However, due to the hydrophobicity of SLNs, they are essentially stabilized to prevent aggregation and diminish the liability of clearance by the macrophage system. Therefore, coating the SLNs surface by a highly hydrophilic moiety leads to prevent aggregation and severe interaction with healthy cells. Resorcinarenes are synthetic supramolecular macrocycles with bowl-shaped head and several hydrogen-bonding tails which are capable of developing additional host-guest complexes through the self-associate process. Resorcinarenes are the most frequently studied macrocycles for the buildup of supramolecular SLN systems, because the bowl-shaped head of the resorcinarene molecules can enable them to adhere readily to the SLN surface, permitted them to interact with the substances outside the coating but prevented them from touching each other, leading to meaningful impact on the stability aspects and physical–functional properties of nanoparticles. Significantly, resorcinarenes and its water-soluble components show good biodegradability, biocompatibility, and nontoxicity, which are essential requirements for applications in any type of drug delivery carriers. This chapter highlights the recent development in resorcinarene-based lipid nanocarriers for drug delivery and targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahapatro, A., & Singh, D. K. (2011). Biodegradable nanoparticles are excellent vehicle for site-directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology, 9(55), 1–11.

    Google Scholar 

  2. Yun, Y., Cho, Y. W., & Park, K. (2013). Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Advanced Drug Delivery Reviews, 65(6), 822–832.

    Article  CAS  PubMed  Google Scholar 

  3. Soni, K., Kukereja, B. K., Kapur, M., & Kohli, K. (2015). Lipid nanoparticles: Future of oral drug delivery and their current trends and regulatory issues. International Journal of Current Pharmaceutical Review and Research, 7(1), 1–18.

    CAS  Google Scholar 

  4. Khan, A. K., Rashid, R., Murtaza, G., & Zahra, A. (2014). Gold nanoparticles: Synthesis and applications in drug delivery. Tropical Journal of Pharmaceutical Research, 13(7), 1169–1177.

    Article  CAS  Google Scholar 

  5. Guo, D., Xie, G., & Luo, J. (2014). Mechanical properties of nanoparticles: Basics and applications. Journal of Physics D: Applied Physics, 47, 1–25.

    CAS  Google Scholar 

  6. Öztürk-Atar, K., Eroğlu, H., & Çalış, S. (2017). Novel advances in targeted drug delivery. Journal of Drug Targeting, 23, 1–10.

    Google Scholar 

  7. Fahmy, T. M., Fonga, P. M., Goyal, A., & Saltzman, W. M. (2005). Targeted for drug delivery. Materials Today, 8(8), 18–26.

    Article  Google Scholar 

  8. Chowdhury, A., Kunjiappan, S., Panneerselvam, T., Somasundaram, B., & Bhattacharjee, C. (2017). Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. International Nano Letters, 7, 91–122.

    Article  CAS  Google Scholar 

  9. Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yadav, N., Khatak, S., & Singh, U. V. S. (2013). Solid lipid nanoparticles: A review. International Journal of Applied Pharmaceutics, 5(2), 8–18.

    CAS  Google Scholar 

  12. Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2(3), 289–300.

    PubMed  PubMed Central  Google Scholar 

  13. Wissing, S. A., Kayser, O., & Muller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272.

    Article  CAS  PubMed  Google Scholar 

  14. Pardeshi, C., Rajput, P., Belgamwar, V., Tekade, A., Patil, G., Chaudhary, K., & Sonje, A. (2012). Solid lipid based nanocarriers: An overview. Acta Pharmaceutica, 62, 433–472.

    Article  CAS  PubMed  Google Scholar 

  15. Müeller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 161–177.

    Article  Google Scholar 

  16. Hu, L. D., Tang, X., & Cui, F. D. (2004). Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. Journal of Pharmacy and Pharmacology, 56, 1527–1535.

    Article  CAS  PubMed  Google Scholar 

  17. Geszke-Moritza, M., & Moritz, M. (2016). Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Materials Science and Engineering C, 68, 982–994.

    Article  CAS  Google Scholar 

  18. Nandini, P. T., Doijad, R. C., Shivakumar, H. N., & Dandagi, P. M. (2015). Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Journal of Drug Delivery, 22, 647–651.

    Article  CAS  Google Scholar 

  19. Kalaycioglu, G. D., & Aydogan, N. (2016). Preparation and investigation of solid lipid nanoparticles for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 510, 77–86.

    Article  CAS  Google Scholar 

  20. Jie, K., Zhou, Y., Yao, Y., & Huang, F. (2015). Macrocyclic amphiphiles. Chemical Society Reviews, 44(11), 3568–3587.

    Article  CAS  PubMed  Google Scholar 

  21. Plachkova-Petrova, D., Petrova, P., Miloshev, S., & Novakov, C. (2012). Optimization of reaction conditions for synthesis C-tetramethylcalix[4]resorcinarene. Bulgarian Chemical Communications, 3, 208–215.

    Google Scholar 

  22. Yu, X., Trase, I., Ren, M., Duval, K., Guo, X., & Chen, Z. (2016). Design of nanoparticle-based carriers for targeted drug delivery. Journal of Nanomaterials, 2016, 1–15.

    Google Scholar 

  23. Motte, L., Billoudet, F., & Pileni, M. P. (1995). Self-assembled monolayer of nanosized particles differing by their sizes. Journal of Physical Chemistry, 99(44), 16425–16429.

    Article  CAS  Google Scholar 

  24. Frankamp, B. L., Uzun, O., Ilhan, F., Boal, A. K., & Rotello, V. M. (2002). Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers. Journal of American Chemical Society, 124(6), 892–893.

    Article  CAS  Google Scholar 

  25. Pileni, M. P. (2001). Nanocrystal self-assemblies: Fabrication and collective properties. Journal of Physical Chemistry-B, 105(17), 3358–3371.

    Article  CAS  Google Scholar 

  26. Collier, C. P., Vossmeyer, T., & Heath, J. R. (1998). Nanocrystal superlattices. Annual Review of Physical Chemistry, 49, 371–404.

    Article  CAS  PubMed  Google Scholar 

  27. Nicholas, A. K., & Paul, S. W. (2014). Self-assembly of nanoparticles: A snapshot. ACS Nano, 8(4), 3101–3103.

    Article  CAS  Google Scholar 

  28. Martin Del Valle, E. M. (2003). Cyclodextrins and their uses: A review. Process Biochemistry, 39(9), 1033–1046.

    Article  CAS  Google Scholar 

  29. Ryzhakov, A., Thi, T. D., Stappaerts, J., Bertoletti, L., Kimpe, K., Rodrigues, A. S. C., Saokham, P., Mooter, G. V., Augustijns, A., Somsen, G. W., Kurkov, S., Inghelbrecht, S., Arien, A., Jimidar, M. I., Schrijnemakers, K., & Loftsson, T. (2016). Self-assembly of cyclodextrins and their complexes in aqueous solutions. Journal of Pharmaceutical Sciences, 105, 2556–2569.

    Article  CAS  PubMed  Google Scholar 

  30. Hanumegowda, U. M., Wu, Y., & Adams, S. P. (2014). Potential impact of cyclodextrin containing formulations in toxicity evaluation of novel compounds in early drug discovery. The Journal of Pharmacy and Pharmacology, 2(1), 1–5.

    Google Scholar 

  31. Aburahma, M. H. (2016). Insights on novel particulate self-assembled drug delivery beads based on partial inclusion complexes between triglycerides and cyclodextrins. Drug Delivery, 23(7), 2205–2219.

    CAS  PubMed  Google Scholar 

  32. Shahgaldian, P., Silva, E., & Coleman, A. W. (2003). A first approach to the study of calixarene solid lipid nanoparticle (SLN) toxicity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 46, 175–177.

    Article  CAS  Google Scholar 

  33. Toma, H. E. (2000). Supramolecular chemistry and technology. Anais da Academia Brasileira de Ciências, 72(1), 5–25.

    Article  CAS  PubMed  Google Scholar 

  34. Busseron, E., Ruff, Y., Moulin, E., & Giuseppone, N. (2013). Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 5, 7098–7140.

    Article  CAS  PubMed  Google Scholar 

  35. Ngurah, B. I. G. M., Jumina, J., Anwar, C., Sunardi, S., & Mustofa, M. (2017). Synthesis and in vitro evaluation of C-methylcalix[4]resorcinaryl octacinnamate and C-methylcalix[4]resorcinaryl octabenzoate as the sunscreen. Indonesian Journal of Chemistry, 17(1), 63–70.

    Article  CAS  Google Scholar 

  36. Nicod, L., Chitry, F., Gaubert, F., & Lemaire, M. (1999). Application of water soluble resorcinarenes in nanofiltration-complexation with caesium and strontium as targets. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 34, 141–151.

    Article  CAS  Google Scholar 

  37. Pietraszkiewicz, M., Pietraszkiewicz, O., Uzig, E., Prus, P., Brzózka, Z., Woźniak, K., Bilewicz, R., Borowiak, T., & Mączyñski, M. (2000). Recent advances in calix[4]resorcinarene chemistry. Journal Butlerov Communications, 3, 55–65.

    Google Scholar 

  38. Hayashida, O., Mizuki, K., Akagi, K., Matsuo, A., Kanamori, T., Nakai, T., Sando, S., & Aoyama, Y. (2003). Macrocyclic glycoclusters. Self-aggregation and phosphate-induced agglutination behaviors of calix[4]resorcarene-based quadruple-chain amphiphiles with a huge oligosaccharide pool. Journal of American Chemical Society, 125(2), 594–601.

    Article  CAS  Google Scholar 

  39. Durairaj, R. B. (2005). Resorcinol: Chemistry, technology and applications (p. 149). Germany: Springer.

    Google Scholar 

  40. Balasubramanian, R., Kim, B., Tripp, S. L., Wang, X., Lieberman, M., & Wei, A. (2002). Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir, 18, 3676–3681.

    Article  CAS  Google Scholar 

  41. Hoegberg, A. G. S. (1980). Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. Journal of Organic Chemistry, 45(22), 4498–4500.

    Article  Google Scholar 

  42. Tunstad, L. M., Tucker, J. A., Dalcanale, E., Weiser, J., Bryant, J. A., Sherman, J. C., Helgeson, R. C., Knobler, C. B., & Cram, D. J. (1989). Host-guest complexation. 48. Octol building blocks for cavitands and carcerands. Journal of Organic Chemistry, 54(6), 1305–1312.

    Article  CAS  Google Scholar 

  43. Hoegberg, A. G. S. (1980). Stereoselective synthesis and DNMR study of two 1,8,15,22-T etraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols. Journal of the American Chemical Society, 102(19), 6046–6050.

    Article  CAS  Google Scholar 

  44. Jain, V. K., & Kanaiya, P. H. (2011). Chemistry of calix[4]resorcinarenes. Russian Chemical Reviews, 80(1), 75–102.

    Article  CAS  Google Scholar 

  45. Timmerman, P., Verboom, W., & Reinhoudt, D. N. (1996). Resorcinarenes. Tetrahedron, 52(8), 2663–2704.

    Article  CAS  Google Scholar 

  46. Utomo, S. B., Jumina, J., Siswanta, D., Mustofa, M., & Kumar, N. (2011). Synthesis of thiomethylated calix[4]resorcinarene based on fennel oil via chloromethylation. Indonesian Journal of Chemistry, 11(1), 1–8.

    Article  Google Scholar 

  47. Sardjonoa, R. E., Kadarohmana, A., & Mardhiyah, A. (2012). Green synthesis of some calix[4]resorcinarene under microwave irradiation. Procedia Chemistry, 4, 224–231.

    Article  CAS  Google Scholar 

  48. Thoden van Velzen, E. U., Engbersen, J. F. J., De Lange, P. J., Mahy, J. W. G., & Reinhoudt, D. N. (1995). Self-assembled monolayers of resorcinarene tetrasulfides on gold. Journal of the American Chemical Society, 117, 6853–6862.

    Article  CAS  Google Scholar 

  49. Bourgeois, J. M., & Stoeckli-Evans, H. (2005). Synthesis of new resorcinarenes under alkaline conditions. Helvetica Chimica Acta, 88(10), 2722–2730.

    Article  CAS  Google Scholar 

  50. Gerkensmeier, T., Mattay, J., & Näther, C. (2001). A new type of calixarene: Octahydroxypyridine[4]arenes. Chemistry A European Journal, 7(2), 465–474.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, M. (2008). Heterocalixaromatics, new generation macrocyclic host molecules in supramolecular chemistry. Chemical Communication, 38, 4541–4551.

    Article  CAS  Google Scholar 

  52. Wang, M. (2012). Nitrogen and oxygen bridged calixaromatics: Synthesis, structure, functionalization and molecular recognition. Accounts of Chemical Research, 45(2), 182–195.

    Article  CAS  PubMed  Google Scholar 

  53. Iwanek, W., & Wzorek, A. (2009). Introduction to the chirality of resorcinarenes. Mini-Reviews in Organic Chemistry, 6, 398–411.

    Article  CAS  Google Scholar 

  54. Hauke, F., Myles, A. J., & Rebek, J., Jr. (2005). Lower rim mono-functionalization of resorcinarenes. Chemical Communication, 33, 4164–4166.

    Article  CAS  Google Scholar 

  55. Utomo, S. B., Saputro, A. N. C., & Rinanto, Y. (2016). Functionalization of C-4-methoxyphenylcalix[4]resorcinarene with several ammonium compounds. IOP Science, 107, 1–10.

    Google Scholar 

  56. Saito, S., Rudkevich, D. M., & Rebek, J., Jr. (1999). Lower rim functionalized resorcinarenes: Useful modules for supramolecular chemistry. Organic Letters, 1(8), 1241–1244.

    Article  CAS  PubMed  Google Scholar 

  57. Jayswal, K. P., Patel, J. R., Patel, V. B., & Patel, M. H. (2008). A new approach towards synthesis of some novel “upper rim” functionalized calix[4]resorcinarene Schiff-bases. Acta Chimica Slovenica, 55, 302–307.

    CAS  Google Scholar 

  58. Cram, D. J., Karbach, S., Kim, H., Knobler, C. B., Maverick, E. F., Ericson, J. L., & Helgeson, R. C. (1988). Host-guest complexation. 46. Cavitands as open molecular vessels form solvates. Journal of the American Chemical Society, 110(7), 2229–2237.

    Article  CAS  Google Scholar 

  59. Osamu, M., Kazumichi, A., Tadahiko, N., & Seiji, S. (1990). Diazo-coupling with a resorcinol-based cyclophane: A new water-soluble host with a deep cleft. Chemistry Letters, 19(7), 1219–1222.

    Article  Google Scholar 

  60. Fransen, J. R., & Dutton, P. J. (1995). Cation binding and conformation of octafunctionalized calix[4]resorcinarenes. Canadian Journal of Chemistry, 73, 2217–2223.

    Article  CAS  Google Scholar 

  61. McIldowie, M. J., Mocerino, M., & Ogden, M. I. (2010). A brief review of Cn-symmetric calixarenes and resorcinarenes. Supramolecular Chemistry, 22(1), 13–39.

    Article  CAS  Google Scholar 

  62. Castillo-Aguirre, A., Rivera-Monroy, Z., & Maldonado, M. (2017). Selective O-alkylation of the crown conformer of tetra(4-hydroxyphenyl)calix[4]resorcinarene to the corresponding tetraalkyl ether. Molecules, 22, 1–11.

    Article  CAS  Google Scholar 

  63. Wiegmann, S., & Mattay, J. (2011). Inherently chiral resorcin[4]arenes: A new concept for improving the functionality. Organic Letters, 13(12), 3226–3228.

    Article  CAS  PubMed  Google Scholar 

  64. Boerrigter, H., Verboom, W., van Hummel, G. J., Harkema, S., & Reinhoudt, D. (1996). Selective functionalization of resorcinarene cavitands; single crystal X-ray structure of a distally functionalized cavitand. Tetrahedron Letters, 37(29), 5167–5170.

    Article  CAS  Google Scholar 

  65. Irwin, J. L., & Sherburn, M. S. (2000). Optimized synthesis of cavitand phenol bowls. Journal of Organic Chemistry, 65, 5846–5848.

    Article  CAS  PubMed  Google Scholar 

  66. Barrett, E. S., Irwin, J. L., Turner, P., & Sherburn, M. S. (2001). Efficient distal-difunctionalization of cavitand bowls. Journal of Organic Chemistry, 66, 8227–8229.

    Article  CAS  PubMed  Google Scholar 

  67. Lukin, O. V., Pirozhenko, V. V., & Shivanyuk, A. N. (1995). Selective acylation of calixresorcinolarene. Tetrahedron Letters, 36(42), 7725–7728.

    Article  CAS  Google Scholar 

  68. Shivanyuk, A., Paulus, E. F., Böhmer, V., & Vogt, W. (1998). Selective derivatizations of resorcarenes. 4. General methods for the synthesis of C2v-symmetrical derivatives. Journal of Organic Chemistry, 63(19), 6448–6449.

    Article  CAS  Google Scholar 

  69. Hisatoshi, K., Hidekazu, N., Hideki, N., Tsuyoshi, U., Kazuhiro, K., & Osamu, M. (1997). Regioselective distal-dibromination of calix[4]resorcinarene. Chemistry Letters, 26(2), 185–186.

    Article  Google Scholar 

  70. Abis, L., Dalcanale, E., Du Vosel, A., & Spera, S. (1988). Structurally new macrocycles from the resorcinol-aldehyde condensation. Configurational and conformational analyses by means of dynamic NMR, NOE and T1 experiments. Journal of Organic Chemistry, 53, 5475–5479.

    Article  CAS  Google Scholar 

  71. Shahgaldian, P., Da Silva, E., Coleman, A. W., Rather, B., & Zaworotko, M. J. (2003). Para-acyl-calixarene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters. International Journal of Pharmaceutics, 253(1–2), 23–38.

    Article  CAS  PubMed  Google Scholar 

  72. Mora-Huertas, C. E., Garrigues, O., Fessi, H., & Elaissari, A. (2012). Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: Comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 80(1), 235–239.

    Article  CAS  PubMed  Google Scholar 

  73. Nik, A. M., Langmaid, S., & Wright, A. J. (2012). Nonionic surfactant and interfacial structure impact crystallinity and stability of β-carotene loaded lipid nanodispersions. Journal of Agricultural and Food Chemistry, 60(16), 4126–4135.

    Article  CAS  PubMed  Google Scholar 

  74. Gualbert, J., Shahgaldian, P., Lazar, A., & Coleman, A. W. (2004). Solid lipid nanoparticles (SLNs): Preparation and properties of calix[4]resorcinarene derived systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 48(1–2), 37–44.

    Article  CAS  Google Scholar 

  75. Siekmann, B., & Westesen, K. (1992). Submicron-sized parenteral carrier systems based on solid lipids. Pharmaceutical and Pharmacological Letters, 1, 123–126.

    CAS  Google Scholar 

  76. Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2011). Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods: Critical comparison. Advances in Colloid and Interface Science, 163(2), 90–122.

    Article  CAS  PubMed  Google Scholar 

  77. Salorinne, K., & Nissinen, M. (2006). Novel tetramethoxy resorcinarene bis-crown ethers. Organic Letters, 8(24), 5473–5476.

    Article  CAS  PubMed  Google Scholar 

  78. Helttmen, K., Salorinne, K., Barboza, T., Barbosa, H. C., Suhonen, A., & Nissinen, M. (2012). Cation binding resorcinarene bis-crowns: The effect of lower rim alkyl chain length on crystal packing and solid lipid nanoparticles. New Journal of Chemistry, 36(3), 789–795.

    Article  CAS  Google Scholar 

  79. Iwanek, W., Urbaniak, M., Gawdzik, B., & Schurig, V. (2003). Synthesis of enantiomerically and diastereomerically pure oxazaborolo-benzoxazaborininone derivatives of resorcinarene from L-proline. Tetrahedron: Asymmetry, 14(18), 2787–2792.

    Article  CAS  Google Scholar 

  80. Ehrler, S., Pieles, U., Wirth-Heller, A., & Shahgaldian, P. (2007). Surface modification of resorcinarene based self-assembled solid lipid nanoparticles for drug targeting. Chemical Communication, 25, 2605–2607.

    Article  CAS  Google Scholar 

  81. Choi, S., Kim, W., & Kim, J. (2003). Surface modification of functional nanoparticles for controlled drug delivery. Journal of Dispersion Science and Technology, 24(3–4), 475–487.

    Article  CAS  Google Scholar 

  82. Purcar, V., Somoghi, R., Nitu, S. G., Nicolae, C., Alexandrescu, E., Gîfu, I. C., Gabor, A. R., Stroescu, H., Ianchi, R., Căprărescu, S., & Cinteză, L. O. (2017). The effect of different coupling agents on nano-ZnO materials obtained via the sol–gel process. Nanomaterials, 7(439), 1–13.

    Google Scholar 

  83. Dalod, A. R. M., Henriksen, L., Grande, T., & Einarsrud, M. (2017). Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: The role of the silane coupling agents. Beilstein Journal of Nanotechnology, 8, 304–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology, 6(1), 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sen, T., & Bruce, I. J. (2012). Surface engineering of nanoparticles in suspension for particle based bio-sensing. Scientific Reports, 2(564), 1–6.

    Google Scholar 

  86. Jie, K., Zhou, Y., Yaoa, Y., & Huang, F. (2015). Macrocyclic amphiphiles. Chemical Society Reviews, 44(11), 3568–3587.

    Article  CAS  PubMed  Google Scholar 

  87. Shahgaldian, P., Pieles, U., & Hegner, M. (2005). Enantioselective recognition of phenylalanine by a chiral amphiphilic macrocycle at the air-water interface: A copper-mediated mechanism. Langmuir, 21(14), 6503–6507.

    Article  CAS  PubMed  Google Scholar 

  88. Gualbert, J., Shahgaldian, P., & Coleman, A. W. (2003). Interactions of amphiphilic calix[4]arene-based solid lipid nanoparticles with bovine serum albumin. International Journal of Pharmaceutics, 257(1–2), 69–73.

    Article  CAS  PubMed  Google Scholar 

  89. Oyarzun-Ampuero, F., Kogan, M. J., Neira-Carrillo, A., & Morales, J. O. (2014). Surface-modified nanoparticles to improve drug delivery. In Dekker encyclopedia of nanoscience and nanotechnology (3rd ed., pp. 1–7). Abingdon: Taylor & Francis.

    Google Scholar 

  90. Holgado, M. A., Martin-Banderas, L., Alvarez-Fuentes, J., Fernandez-Arevalo, M. L., & Arias, J. (2012). Drug targeting to cancer by nanoparticles surface functionalized with special biomolecules. Current Medicinal Chemistry, 19(19), 3188–3195.

    Article  CAS  PubMed  Google Scholar 

  91. Ma, N., Ma, C., Li, C., Wang, T., Tang, Y., Wang, H., Mou, X., Chen, Z., & He, N. (2013). Influence of nanoparticle shape, size and surface functionalization on cellular uptake. Journal of Nanoscience and Nanotechnology, 13(10), 6485–6498.

    Article  CAS  PubMed  Google Scholar 

  92. Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 64–70.

    Article  PubMed  Google Scholar 

  93. Teixeira, M. C., Carbone, C., & Souto, E. B. (2017). Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Progress in Lipid Research, 68, 1–11.

    Article  CAS  PubMed  Google Scholar 

  94. Singhal, G. B., Patel, R. P., Prajapati, B. G., & Patel, N. A. (2011). Solid lipid nanoparticles and nano lipid carriers: A novel solid lipid based drug carrier. International Research Journal of Pharmacy, 2(2), 40–52.

    CAS  Google Scholar 

  95. Mariam, J., Sivakami, S., & Dongre, P. M. (2016). Albumin corona on nanoparticles: A strategic approach in drug delivery. Drug Delivery, 23, 2668–2676.

    CAS  PubMed  Google Scholar 

  96. Guo, D. S., Wang, K., Wang, Y. X., & Liu, Y. (2012). Cholinesterase-responsive supramolecular vesicle. Journal of the American Chemical Society, 134(24), 10244–10250.

    Article  CAS  PubMed  Google Scholar 

  97. Wang, K., Guo, D. S., Wang, X., & Liu, Y. (2011). Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano, 5(4), 2880–2894.

    Article  CAS  PubMed  Google Scholar 

  98. Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 63(1), 185–198.

    Article  CAS  PubMed  Google Scholar 

  99. Duan, Q., Cao, Y., Li, Y., Hu, X., Xiao, T., Lin, C., Pan, Y., & Wang, L. (2013). pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. Journal of the American Chemical Society, 135(28), 10542–10549.

    Article  CAS  PubMed  Google Scholar 

  100. Gallego-Yerga, L., Lomazzi, M., Sansone, F., Mellet, C. O., Casnatib, A., & Fernández, J. M. G. (2014). Glycoligand-targeted core-shell nanospheres with tunable drug release profiles from calixarene-cyclodextrin heterodimers. Chemical Communication, 50(56), 7440–7443.

    Article  CAS  Google Scholar 

  101. Shivanyuk, A., & Rebek, J., Jr. (2001). Reversible encapsulation by self-assembling resorcinarene subunits. PNAS, 98(14), 7662–7665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Z., Nalluri, S. K. M., & Stoddart, J. F. (2017). Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes. Chemical Society Reviews, 46, 2459–2478.

    Article  CAS  PubMed  Google Scholar 

  103. Ma, X., & Zhao, Y. (2015). Biomedical applications of supramolecular systems based on host–guest interactions. Chemical Reviews, 115(15), 7794–7839.

    Article  CAS  PubMed  Google Scholar 

  104. Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2(4), 282–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ruckenstein, E., & Li, Z. F. (2005). Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science, 113(1), 43–63.

    Article  CAS  PubMed  Google Scholar 

  106. Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K., & Dobson, J. (2009). Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 42(22), 1–15.

    Article  CAS  Google Scholar 

  107. Ravindran, A., Chandran, P., & Khan, S. S. (2013). Biofunctionalized silver nanoparticles: Advances and prospects. Colloids and Surfaces B: Biointerfaces, 105, 342–352.

    Article  CAS  PubMed  Google Scholar 

  108. Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions Mathematical Physical & Engineering Sciences, 368(1915), 1333–1383.

    Article  CAS  Google Scholar 

  109. Yang, J., Lee, J. Y., & Ying, J. Y. (2011). Phase transfer and its applications in nanotechnology. Chemical Society Reviews, 40(3), 1672–1696.

    Article  CAS  PubMed  Google Scholar 

  110. Mayya, K. S., & Caruso, F. (2003). Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir, 19(17), 6987–6993.

    Article  CAS  Google Scholar 

  111. Wei, Y., Yang, J., & Ying, J. Y. (2010). Reversible phase transfer of quantum dots and metal nanoparticles. Chemical Communication, 46(18), 3179–3181.

    Article  CAS  Google Scholar 

  112. Yong, Y., Yan, S., Ying, H., & Chaoguo, Y. (2010). Preparation of resorcinarene-functionalized gold nanoparticles and their catalytic activities for reduction of aromatic nitro compounds. Chinese Journal of Chemistry, 28(5), 705–712.

    Article  Google Scholar 

  113. Wei, A., Stavens, K. B., Pusztay, S. V., & Andres, R. P. (1999). Synthesis and characterization of resorcinarene-encapsulated nanoparticles. MRS Proceedings, 581, 59–63.

    Article  Google Scholar 

  114. Kim, B., Balasubramanian, R., Pe’rez-Segarra, W., Wei, A., Decker, B., & Mattay, J. (2005). Self-assembly of resorcinarene-stabilized gold nanoparticles: Influence of the macrocyclic headgroup. Supramolecular Chemistry, 17(1–2), 173–180.

    Article  CAS  Google Scholar 

  115. Hansen, M. N., Chang, L., & Wei, A. (2008). Resorcinarene-encapsulated gold nanorods: Solvatochromatism and magnetic nanoshell formation. Supramolecular Chemistry, 20(1–2), 35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ermakova, A. M., Morozova, J. E., Shalaeva, Y. V., Syakaev, V. V., Nizameev, I. R., Kadirov, M. K., Antipin, I. S., & Konovalov, A. I. (2017). The supramolecular approach to the phase transfer of carboxylic calixresorcinarene-capped silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524, 127–134.

    Article  CAS  Google Scholar 

  117. Mishra, D., Kongor, A., Panchal, M., Modi, K., & Jain, V. (2018). Resorcinarene-embedded stable silver nanoparticles: A fluorescent nanoprobe for Pb(II) in water. International Journal for Research in Applied Science & Engineering Technology, 6(1), 1360–1370.

    Article  Google Scholar 

  118. Sergeeva, T. Y., Aida, I., Samigullina, A. I., Gubaidullin, A. T., Irek, R., Nizameev, I. R., Kadirov, M. K., Mukhitova, R. K., Albina, Y., Ziganshina, A. Y., & Konovalov, A. I. (2016). Application of ferrocene-resorcinarene in silver nanoparticle synthesis. RSC Advances, 6(90), 87128–87133.

    Article  CAS  Google Scholar 

  119. Tripp, S. L., Pusztay, S. V., Ribbe, A. E., & Wei, A. (2002). Self-assembly of cobalt nanoparticle rings. Journal of the American Chemical Society, 124(27), 7914–7915.

    Article  CAS  PubMed  Google Scholar 

  120. Zhou, J., Chen, M., & Diao, G. (2013). Assembling gold and platinum nanoparticles on resorcinarene modified graphene and their electrochemical applications. Journal of Materials Chemistry A, 1(6), 2278–2285.

    Article  CAS  Google Scholar 

Download references

Declaration

All figures and tables are original and self-made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Das, M.K. (2019). Surface Modification of Resorcinarene-Based Self-Assembled Solid Lipid Nanoparticles for Drug Targeting. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_16

Download citation

Publish with us

Policies and ethics