Skip to main content

Successful Delivery of Zidovudine-Loaded Docosanol Nanostructured Lipid Carriers (Docosanol NLCs) into Rat Brain

  • Chapter
  • First Online:
Book cover Surface Modification of Nanoparticles for Targeted Drug Delivery

Abstract

The major challenges to the clinical application of zidovudine are its moderate aqueous solubility, relative short half-life, and incapability to go across BBB after systemic administration makes the brain one of the dominant HIV reservoirs. We investigated the development of zidovudine-loaded NLCs based on docosanol and oleic acid which were further surface modified with PEG4000 and HAS. The drug content and entrapment efficiencies were assessed by UV analysis. The mean diameter of the SyLN was found to be at 54.7 ± 1.4 nm with a zeta potential of −21.6 ± 0.2 mV and relatively low polydispersity. The NLCs showed excellent stability in the refrigerated condition, in blood serum and were safe for IV administration. In vitro release studies showed a sustained release profile of zidovudine in aCSF. In vivo plasma and brain pharmacokinetics investigation in a rat model showed that SyLN and SyLN-Peg NLCs rapidly reached the brain and yielded higher MRT, Cmax, and AUC. The rat brain pharmacokinetic data confirm the brain localization and accumulation of the developed NLCs delivering AZT in a sustained manner for a prolonged period of time, which is further confirmed by CLSM images of brain cryosections labeled with SyLN-C6 NLCs. Our results suggest that the developed docosanol NLCs could be a promising drug delivery system for long-term brain delivery of zidovudine in the treatment of Neuro-AIDS .

The original version of this chapter was revised. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-06115-9_26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 07 May 2019

    This book was inadvertently published with incorrect affiliation of the authors Lopamudra Dutta and Biswajit Mukherjee in Chapter 14 and it should be Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India

References

  1. Koyuncu, O. O., Hogue, I. B., & Enquist, L. W. (2013). Virus infections in the nervous system. Cell Host and Microbe, 13, 379–393. https://doi.org/10.1016/j.chom.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  2. Schnell, G., Joseph, S., Spudich, S., Price, R. W., & Swanstrom, R. (2011). HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathogens, 7, e1002286. https://doi.org/10.1371/journal.ppat.1002286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klecker, R. W., Collins, J. M., Yarchoan, R., Thomas, R., Jenkins, J. F., Broder, S., et al. (1987). Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: A novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clinical Pharmacology and Therapeutics, 41, 407–412.

    Article  PubMed  Google Scholar 

  4. Fan, H., Liu, G., Huang, Y., Li, Y., & Xia, Q. (2014). Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of phenylethyl resorcinol. Applied Surface Science, 288, 193–200. https://doi.org/10.1016/j.apsusc.2013.10.006.

    Article  CAS  Google Scholar 

  5. Lim, W. M., Rajinikanth, P. S., Mallikarjun, C., & Kang, Y. B. (2014). Formulation and delivery of itraconazole to the brain using a nanolipid carrier system. International Journal of Nanomedicine, 9, 2117–2126. https://doi.org/10.2147/IJN.S57565.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Clercq, E. (2010). Antiretroviral drugs. Current Opinion in Pharmacology, 10, 507–515. https://doi.org/10.1016/j.coph.2010.04.011.

    Article  CAS  PubMed  Google Scholar 

  7. Kuo, Y.-C., & Chung, J.-F. (2011). Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids and Surfaces. B, Biointerfaces, 83, 299–306. https://doi.org/10.1016/j.colsurfb.2010.11.037.

    Article  CAS  PubMed  Google Scholar 

  8. Purvin, S., Vuddanda, P. R., Singh, S. K., Jain, A., & Singh, S. (2014). Pharmacokinetic and tissue distribution study of solid lipid nanoparticles of zidovudine in rats. Journal of Nanotechnology, 2014, 1–7. https://doi.org/10.1155/2014/854018.

    Article  CAS  Google Scholar 

  9. Singh, S., Dobhal, A. K., Jain, A., Pandit, J. K., & Chakraborty, S. (2010). Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chemical and Pharmaceutical Bulletin (Tokyo), 58, 650–655.

    Article  CAS  Google Scholar 

  10. Uronnachi, E. M., Ogbonna, J. D., Kenechukwu, F. C., Chime, S. A., Attama, A. A., & Okore, V. C. (2014). Formulation and release characteristics of zidovudine-loaded solidified lipid microparticles. Tropical Journal of Pharmaceutical Research, 13, 199–199. https://doi.org/10.4314/tjpr.v13i2.5.

    Article  CAS  Google Scholar 

  11. Deepak Sunil, B., Rajendra, D., & Narendra, D. (2010). Liposomal drug delivery system for zidovudine: Design and characterization. International Journal of Drug Development and Research, 2, 8–14.

    Google Scholar 

  12. Shibata, A., McMullen, E., Pham, A., Belshan, M., Sanford, B., Zhou, Y., et al. (2013). Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Research and Human Retroviruses, 29, 746–754. https://doi.org/10.1089/aid.2012.0301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Das, S., Ng, W. K., & Tan, R. B. H. (2012). Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? European Journal of Pharmaceutical Sciences, 47, 139–151. https://doi.org/10.1016/j.ejps.2012.05.010.

    Article  CAS  PubMed  Google Scholar 

  14. Doktorovová, S., Araújo, J., Garcia, M. L., Rakovský, E., & Souto, E. B. (2010). Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids and Surfaces. B, Biointerfaces, 75, 538–542. https://doi.org/10.1016/j.colsurfb.2009.09.033.

    Article  CAS  PubMed  Google Scholar 

  15. Joshy, K. S., & Sharma, C. P. (2012). Blood compatible nanostructured lipid carriers for the enhanced delivery of azidothymidine to brain. Journal of Computational and Theoretical Nanoscience, 6(1), 47–55.

    CAS  Google Scholar 

  16. Marcelletti, J. F. (2002). Synergistic inhibition of herpesvirus replication by docosanol and antiviral nucleoside analogs. Antiviral Research, 56, 153–166.

    Article  CAS  PubMed  Google Scholar 

  17. Nanjwade, B. K., Kadam, V. T., & Manvi, F. V. (2013). Formulation and characterization of nanostructured lipid carrier of ubiquinone (Coenzyme Q10). Journal of Biomedical Nanotechnology, 9, 450–460.

    Article  CAS  PubMed  Google Scholar 

  18. Pope, L. E., Marcelletti, J. F., Katz, L. R., Lin, J. Y., Katz, D. H., Parish, M. L., et al. (1998). The anti-herpes simplex virus activity of n-docosanol includes inhibition of the viral entry process. Antiviral Research, 40, 85–94. https://doi.org/10.1016/S0166-3542(98)00048-5.

    Article  CAS  PubMed  Google Scholar 

  19. Souto, E. B., Mehnert, W., & Muller, R. H. (2006). Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. Journal of Microencapsulation, 23, 417–433. https://doi.org/10.1080/02652040600612439.

    Article  CAS  PubMed  Google Scholar 

  20. Pope, L. E., Marcelletti, J. F., Katz, L. R., & Katz, D. H. (1996). Anti-herpes simplex virus activity of n-docosanol correlates with intracellular metabolic conversion of the drug. Journal of Lipid Research, 37, 2167–2178.

    CAS  PubMed  Google Scholar 

  21. TOXNET: 1-DOCOSANOL [WWW Document]. (n.d.). Retrieved October 19, 2017, from http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@DOCNO+5739

  22. Iglesias, G., Hlywka, J. J., Berg, J. E., Khalil, M. H., Pope, L. E., & Tamarkin, D. (2002a). The toxicity of behenyl alcohol: I. Genotoxicity and subchronic toxicity in rats and dogs. Regulatory Toxicology and Pharmacology, 36, 69–79. https://doi.org/10.1006/rtph.2002.1566.

    Article  CAS  PubMed  Google Scholar 

  23. Iglesias, G., Hlywka, J. J., Berg, J. E., Khalil, M. H., Pope, L. E., & Tamarkin, D. (2002b). The toxicity of behenyl alcohol: II. Reproduction studies in rats and rabbits. Regulatory Toxicology and Pharmacology, 36, 80–85. https://doi.org/10.1006/rtph.2002.1566.

    Article  CAS  PubMed  Google Scholar 

  24. Aburahma, M. H., & Badr-Eldin, S. M. (2014). Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opinion on Drug Delivery, 11, 1865–1883. https://doi.org/10.1517/17425247.2014.935335.

    Article  CAS  PubMed  Google Scholar 

  25. Chinsriwongkul, A., Chareanputtakhun, P., Ngawhirunpat, T., Rojanarata, T., Sila-on, W., Ruktanonchai, U., et al. (2012). Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech, 13, 150–158. https://doi.org/10.1208/s12249-011-9733-8.

    Article  CAS  PubMed  Google Scholar 

  26. Gönüllü, Ü., Üner, M., Yener, G., Karaman, E. F., & Aydoğmuş, Z. (2015). Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery. Acta Pharmaceutica, 65, 1–13. https://doi.org/10.1515/acph-2015-0009.

    Article  CAS  PubMed  Google Scholar 

  27. Patel, D., Dasgupta, S., Dey, S., Ramani, Y. R., Ray, S., & Mazumder, B. (2012). Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: Preparation, characterization, and in vivo evaluation. Scientia Pharmaceutica, 80, 749–764. https://doi.org/10.3797/scipharm.1202-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Azhar Shekoufeh Bahari, L., & Hamishehkar, H. (2016). The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Advanced Pharmaceutical Bulletin, 6, 143–151. https://doi.org/10.15171/apb.2016.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaji, J., & Jain, V. (2010). Solid lipid nanoparticles: A novel carrier for chemotherapy. International Journal of Pharmacy and Pharmaceutical Sciences, 2, 8–17.

    CAS  Google Scholar 

  30. Uner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2, 289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, L., Luo, Q., Lin, T., Li, R., Zhu, T., Zhou, K., et al. (2015). PEGylated nanostructured lipid carriers (PEG-NLC) as a novel drug delivery system for biochanin A. Drug Development and Industrial Pharmacy, 41, 1204–1212. https://doi.org/10.3109/03639045.2014.938082.

    Article  CAS  PubMed  Google Scholar 

  32. Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2014). Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innovative Food Science and Emerging Technologies, 26, 366–374. https://doi.org/10.1016/j.ifset.2014.06.012.

    Article  CAS  Google Scholar 

  33. Kashanian, S., & Rostami, E. (2014). PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. Journal of Nanoparticle Research, 16, 2293. https://doi.org/10.1007/s11051-014-2293-6.

    Article  CAS  Google Scholar 

  34. Tsai, M. J., Wu, P. C., Huang, Y. B., Chang, J. S., Lin, C. L., Tsai, Y. H., et al. (2012). Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. International Journal of Pharmaceutics, 423, 461–470. https://doi.org/10.1016/j.ijpharm.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  35. Pardeike, J., Weber, S., Haber, T., Wagner, J., Zarfl, H. P., Plank, H., et al. (2011). Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. International Journal of Pharmaceutics, 419, 329–338. https://doi.org/10.1016/j.ijpharm.2011.07.040.

    Article  CAS  PubMed  Google Scholar 

  36. Yuan, H., Wang, L.-L., Du, Y.-Z., You, J., Hu, F.-Q., & Zeng, S. (2007). Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids and Surfaces. B, Biointerfaces, 60, 174–179. https://doi.org/10.1016/j.colsurfb.2007.06.011.

    Article  CAS  PubMed  Google Scholar 

  37. Thatipamula, R., Palem, C., Gannu, R., Mudragada, S., & Yamsani, M. (2011). Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 19, 23–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaba, B., Fazil, M., Khan, S., Ali, A., Baboota, S., & Ali, J. (2015). Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bulletin of Faculty of Pharmacy, Cairo University, 53, 147–159. https://doi.org/10.1016/j.bfopcu.2015.10.001.

    Article  Google Scholar 

  39. Tita, B., Ledeti, I., Bandur, G., & Tita, D. (2014). Compatibility study between indomethacin and excipients in their physical mixtures. Journal of Thermal Analysis and Calorimetry, 118, 1293–1304. https://doi.org/10.1007/s10973-014-3986-x.

    Article  CAS  Google Scholar 

  40. Gartziandia, O., Egusquiaguirre, S. P., Bianco, J., Pedraz, J. L., Igartua, M., Hernandez, R. M., et al. (2016). Nanoparticle transport across in vitro olfactory cell monolayers. International Journal of Pharmaceutics, 499, 81–89. https://doi.org/10.1016/j.ijpharm.2015.12.046.

    Article  CAS  PubMed  Google Scholar 

  41. Praveen, S., Gowda, D. V., Srivastava, A., & Osmani, R. A. M. (2016). Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride. Der Pharmacia Lettre, 8, 304–309. https://doi.org/10.20959/wjpps20164-6398.

    Article  CAS  Google Scholar 

  42. Patlolla, R. R., Chougule, M., Patel, A. R., Jackson, T., Tata, P. N. V., & Singh, M. (2010). Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. Journal of Controlled Release, 144, 233–241. https://doi.org/10.1016/j.jconrel.2010.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D’Souza, S., & Souza, S. (2014). A review of in vitro drug release test methods for nano-sized dosage forms. Advances in Pharmacy, 2014, 1–12. https://doi.org/10.1155/2014/304757.

    Article  Google Scholar 

  44. Ahmad, A. M. (2007). Recent advances in pharmacokinetic modeling. Biopharmaceutics and Drug Disposition, 28, 135–143. https://doi.org/10.1002/bdd.

    Article  CAS  PubMed  Google Scholar 

  45. Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67, 217–223. https://doi.org/10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  46. Hu, X., Yang, F., Liao, Y., Li, L., & Zhang, L. (2017). Cholesterol–PEG comodified poly (N -butyl) cyanoacrylate nanoparticles for brain delivery: In vitro and in vivo evaluations. Drug Delivery, 24, 121–132. https://doi.org/10.1080/10717544.2016.1233590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khatik, R., Dwivedi, P., Shukla, A., Srivastava, P., Rath, S. K., Paliwal, S. K., et al. (2014). Development, characterization and toxicological evaluations of phospholipids complexes of curcumin for effective drug delivery in cancer chemotherapy. Drug Delivery, 23, 1–12. https://doi.org/10.3109/10717544.2014.936988.

    Article  CAS  Google Scholar 

  48. Li, C., Shen, Y., Sun, C., Nihad, C., & Tu, J. (2014). Immunosafety and chronic toxicity evaluation of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) polymer micelles for paclitaxel delivery. Drug Delivery, 23, 1–8. https://doi.org/10.3109/10717544.2014.920429.

    Article  CAS  Google Scholar 

  49. Bondonna, T. J., Jacquet, Y., & Wolf, G. (1977). Perfusion-fixation procedure for immediate histologic processing of brain tissue. Physiology and Behavior, 19, 345–347. https://doi.org/10.1016/0031-9384(77)90351-1.

    Article  CAS  PubMed  Google Scholar 

  50. Gage, G. J., Kipke, D. R., & Shain, W. (2012). Whole animal perfusion fixation for rodents. Journal of Visualized Experiments, 65, 1–9. https://doi.org/10.3791/3564.

    Article  Google Scholar 

  51. Mainardes, R. M., Palmira, D., & Gremiao, M. (2009). Reversed phase HPLC determination of zidovudine in rat plasma and its pharmacokinetics after a single intranasal dose administration. Biological Research, 42, 357–364. https://doi.org/10.4067/S0716-97602009000300010.

    Article  CAS  PubMed  Google Scholar 

  52. Yuan, Z. Y., Hu, Y. L., & Gao, J. Q. (2015). Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS One, 10, e0134722. https://doi.org/10.1371/journal.pone.0134722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. He, C., Cai, P., Li, J., Zhang, T., Lin, L., Abbasi, A. Z., et al. (2017). Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. Journal of Controlled Release, 246, 98–109.

    Article  CAS  PubMed  Google Scholar 

  54. Shilo, M., Sharon, A., Baranes, K., Motiei, M., Lellouche, J.-P. M., & Popovtzer, R. (2015). The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model. Journal of Nanobiotechnology, 13, 19. https://doi.org/10.1186/s12951-015-0075-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Drobek, T., Spencer, N. D., & Heuberger, M. (2005). Compressing PEG brushes. Macromolecules, 38, 5254–5259. https://doi.org/10.1021/ma0504217.

    Article  CAS  Google Scholar 

  56. Storm, G., Belliot, S. O., Daemen, T., & Lasic, D. D. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48. https://doi.org/10.1016/0169-409X(95)00039-A.

    Article  CAS  Google Scholar 

  57. Amoozgar, Z., & Yeo, Y. (2012). Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 4, 219–233. https://doi.org/10.1002/wnan.1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Łaszcz, M., Kosmacińska, B., Korczak, K., Śmigielska, B., Glice, M., Maruszak, W., et al. (2007). Study on compatibility of imatinib mesylate with pharmaceutical excipients. Journal of Thermal Analysis and Calorimetry, 88, 305–310. https://doi.org/10.1007/s10973-006-8001-8.

    Article  CAS  Google Scholar 

  59. Manikandan, M., Kannan, K., & Manavalan, R. (2013). Compatibility studies of camptothecin with various pharmaceutical excipients used in the development of nanoparticle formulation. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 315–321.

    CAS  Google Scholar 

  60. Nagaich, U., & Gulati, N. (2016). Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: Design and in vivo characterization. Drug Delivery and Translational Research, 6, 289–298. https://doi.org/10.1007/s13346-016-0291-1.

    Article  CAS  PubMed  Google Scholar 

  61. Ribeiro, L. N. M., Breitkreitz, M. C., Guilherme, V. A., da Silva, G. H. R., Couto, V. M., Castro, S. R., et al. (2017). Natural lipids-based NLC containing lidocaine: From pre-formulation to in vivo studies. European Journal of Pharmaceutical Sciences, 106, 102–112. https://doi.org/10.1016/j.ejps.2017.05.060.

    Article  CAS  PubMed  Google Scholar 

  62. Barre, J., Urien, S., Albengres, E., & Tillement, J. P. (1988). Plasma and tissue binding as determinants of drug body distribution. Possible applications to toxicological studies. Xenobiotica, 18(Suppl 1), 15–20.

    PubMed  Google Scholar 

  63. Sane, R., Agarwal, S., & Elmquist, W. F. (2012). Brain distribution and bioavailability of elacridar after different routes of administration in the mouse. Drug Metabolism and Disposition, 40, 1612–1619. https://doi.org/10.1124/dmd.112.045930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lockman, P. R., Koziara, J. M., Mumper, R. J., & Allen, D. D. (2004). Nanoparticle surface charges alter blood–brain barrier integrity and permeability. Journal of Drug Targeting, 12, 635–641. https://doi.org/10.1080/10611860400015936.

    Article  CAS  PubMed  Google Scholar 

  65. Voigt, N., Henrich-Noack, P., Kockentiedt, S., Hintz, W., Tomas, J., & Sabel, B. A. (2014). Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 87, 19–29. https://doi.org/10.1016/j.ejpb.2014.02.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the experimental/analytical support of Guwahati Biotech Park, Technology Complex, IIT Guwahati and The Sophisticated Analytical Instrument Facility (SAIF), NEHU Shillong, and College of Veterinary Science, Guwahati. This work was financially supported by the Department of Biotechnology, Ministry of Science & Technology, Government of India under Grant No. BT/504/NE/TBP/2013.

Declaration

All figures and tables are original and self-made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, T., Das, M.K., Dutta, L., Mukherjee, B., Das, S., Sarma, A. (2019). Successful Delivery of Zidovudine-Loaded Docosanol Nanostructured Lipid Carriers (Docosanol NLCs) into Rat Brain. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_14

Download citation

Publish with us

Policies and ethics