Skip to main content

Health Lifestyle Data-Driven Applications Using Pervasive Computing

  • Chapter
  • First Online:
Big Data, Big Challenges: A Healthcare Perspective

Abstract

In this chapter, we overview the current and future impact of pervasive computing in the health domain. In this context, we focus on some of the crucial aspects of data-driven applications. We present examples of recently proposed lifestyle applications and highlight the ethical issues with such applications. We discuss challenges and opportunities in the process of transforming the raw data collected from wearables and mobile devices into insights. Finally, the last part of this chapter provides insights into socio-ethical aspects which are raising in the context of data-driven health applications based on pervasive computing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orji R, Moffatt K (2018) Persuasive technology for health and wellness: state-of-the-art and emerging trends. Health Inform J 24:66ā€“91

    ArticleĀ  Google ScholarĀ 

  2. Riazul Islam SM, Kwak D, Humaun Kabir M, Hossain M, Kwak KS (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678ā€“708

    ArticleĀ  Google ScholarĀ 

  3. Intille S (2016) The precision medicine initiative and pervasive health research. IEEE Pervasive Comput 15:88ā€“91

    ArticleĀ  Google ScholarĀ 

  4. Fang R, Pouyanfar S, Yang Y, Chen S-C, Iyengar SS (2016) Computational health informatics in the big data age. ACM Comput Surv 49:1ā€“36

    ArticleĀ  Google ScholarĀ 

  5. Faraway JJ, Augustin NH (2018) When small data beats big data. Stat Probab Lett 136:142ā€“145

    ArticleĀ  Google ScholarĀ 

  6. Curry E (2016)The big data value chain: definitions, concepts, and theoretical approaches. In: New horizons for a data-driven e economy, pp 29ā€“37

    ChapterĀ  Google ScholarĀ 

  7. Heron KE, Smyth JM (2010) Ecological momentary interventions: incorporating mobile technology into psychosocial and health behaviour treatments. Br J Health Psychol 15:1ā€“39

    ArticleĀ  Google ScholarĀ 

  8. Rodgers MM, Pai VM, Conroy RS (2015) Recent advances in wearable sensors for health monitoring. IEEE Sens J 15:3119ā€“3126

    ArticleĀ  Google ScholarĀ 

  9. Bialke M, Rau H, Schwaneberg T, Walk R, Bahls T, Hoffmann W (2017) MosaicQAā€”a general approach to facilitate basic data quality assurance for epidemiological research. Methods Inf Med 56:e67ā€“e73

    ArticleĀ  Google ScholarĀ 

  10. Walinjkar A, Woods J (2017) Personalized wearable systems for real-time ECG classification and healthcare interoperability: real-time ECG classification and FHIR interoperability. In: Internet technologies and applications (ITA). https://doi.org/10.1109/itecha.2017.8101902

  11. Habib ur Rehman M, Liew CS, Wah TY, Shuja J, Daghighi B (2015) Mining personal data using smartphones and wearable devices: a survey. Sensors 15:4430ā€“4469

    ArticleĀ  Google ScholarĀ 

  12. Althoff T (2017) Population-scale pervasive health. IEEE Pervasive Comput 16:75ā€“79

    ArticleĀ  Google ScholarĀ 

  13. Althoff T, Sosič R, Hicks JL, King AC, Delp SL, Leskovec J (2017) Large-scale physical activity data reveal worldwide activity inequality. Nature 547:336ā€“339

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Althoff T, Horvitz E, White RW, Zeitzer J (2017) Harnessing the web for population-scale physiological sensing. In: Proceedings of the 26th international conference on world wide webā€”WWW ā€™17. https://doi.org/10.1145/3038912.3052637

  15. Dean DA 2nd, Goldberger AL, Mueller R, Kim M, Rueschman M, Mobley D et al (2016) Scaling up scientific discovery in sleep medicine: the national sleep research resource. Sleep 39:1151ā€“1164

    ArticleĀ  Google ScholarĀ 

  16. Haidar R, Koprinska I, Jeffries B (2017) Sleep apnea event detection from nasal airflow using convolutional neural networks. lecture notes in computer science. pp 819ā€“827

    Google ScholarĀ 

  17. Jaimes LG, Llofriu M, Raij A (2016) Preventer, a selection mechanism for just-in-time preventive interventions. IEEE Transact Affect Comput 7:243ā€“257

    ArticleĀ  Google ScholarĀ 

  18. SchƤfer H, Hors-Fraile S, Karumur RP, Valdez AC, Said A, Torkamaan H, et al (2017) Towards health (aware) recommender systems. In: Proceedings of the 2017 international conference on digital healthā€”DH ā€™17. https://doi.org/10.1145/3079452.3079499

  19. Dias Pereira dos Santos A, Yacef K, Martinez-Maldonado R (2017) Letā€™s dance: how to build a user model for dance students using wearable technology. In: Proceedings of the 25th conference on user modeling, adaptation and personalizationā€”UMAP ā€™17, ACM Press, New York, USA, pp 183ā€“191

    Google ScholarĀ 

  20. Hochberg I, Feraru G, Kozdoba M, Mannor S, Tennenholtz M, Yom-Tov E (2016) Encouraging physical activity in patients with diabetes through automatic personalized feedback via reinforcement learning improves glycemic control. Diabetes Care 39:e59ā€“e60

    ArticleĀ  Google ScholarĀ 

  21. Hu X, Hsueh P-YS, Chen C-H, Diaz KM, Cheung Y-KK, Qian M (2017) A first step towards behavioral coaching for managing stress: a case study on optimal policy estimation with multi-stage threshold Q-learning. In: AMIA annual symposiym proceedings, vol 930ā€“939

    Google ScholarĀ 

  22. Badgeley MA, Shameer K, Glicksberg BS, Tomlinson MS, Levin MA, McCormick PJ et al (2016) EHDViz: clinical dashboard development using open-source technologies. BMJ Open 6:e010579

    ArticleĀ  Google ScholarĀ 

  23. Wanderer JP, Nelson SE, Ehrenfeld JM, Monahan S, Park S (2016) Clinical data visualization: the current state and future needs. J Med Syst 40:275

    ArticleĀ  Google ScholarĀ 

  24. MIT health infoscape [Internet]. Available http://senseable.mit.edu/healthinfoscape/

  25. Araujo MLD, Mejova Y, Aupetit M, Weber I (2017)Visualizing health awareness in the middle east. In: AAAI conference on web and social media ICWSM, p 726

    Google ScholarĀ 

  26. The data visualisation catalogue [Internet] Available https://datavizcatalogue.com/index.html

  27. Bƶrner K, Maltese A, Balliet RN, Heimlich J (2016) Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors. Inf Vis 15:198ā€“213

    ArticleĀ  Google ScholarĀ 

  28. Aupetit M, Fernandez-Luque L, Singh M, Srivastava J (2017) Visualization of wearable data and biometrics for analysis and recommendations in childhood obesity. In: IEEE 30th international symposium on computer-based medical systems (CBMS). https://doi.org/10.1109/cbms.2017.120

  29. Bishop CM (2016) Pattern recognition and machine learning. Springer

    Google ScholarĀ 

  30. Aupetit M, Couturier P, Massotte P (2002) Gamma-observable neighbours for vector quantization. Neural Netw 15:1017ā€“1027

    ArticleĀ  Google ScholarĀ 

  31. Lespinats S, Aupetit M, Meyer-Baese A (2015) ClassiMap: a new dimension reduction technique for exploratory data analysis of labeled data. Int J Pattern Recognit Artif Intell 29:1551008

    ArticleĀ  Google ScholarĀ 

  32. Arora T, Choudhury S, Taheri S (2015) The relationships among sleep, nutrition, and obesity. Curr Sleep Med Rep 1:218ā€“225

    ArticleĀ  Google ScholarĀ 

  33. Kudva YC, Carter RE, Cobelli C, Basu R, Basu A (2014) Closed-loop artificial pancreas systems: physiological input to enhance next-generation devices. Diabetes Care 37:1184ā€“1190

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Heintzman ND (2015) A digital ecosystem of diabetes data and technology: services, systems, and tools enabled by wearables, sensors, and apps. J Diabetes Sci Technol 10:35ā€“41

    ArticleĀ  Google ScholarĀ 

  35. Dadlani V, Levine JA, McCrady-Spitzer SK, Dassau E, Kudva YC (2015) Physical activity capture technology with potential for incorporation into closed-loop control for type 1 diabetes. J Diabetes Sci Technol 9:1208ā€“1216

    ArticleĀ  Google ScholarĀ 

  36. Ghafar-Zadeh E (2015) Wireless integrated biosensors for point-of-care diagnostic applications. Sensors 15:3236ā€“3261

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Ratjen I, Schafmayer C, di Giuseppe R, Waniek S, Plachta-Danielzik S, Koch M et al (2017) Postdiagnostic physical activity, sleep duration, and TV watching and all-cause mortality among long-term colorectal cancer survivors: a prospective cohort study. BMC Cancer 17:701

    ArticleĀ  Google ScholarĀ 

  38. Gell NM, Grover KW, Humble M, Sexton M, Dittus K (2017) Efficacy, feasibility, and acceptability of a novel technology-based intervention to support physical activity in cancer survivors. Support Care Cancer 25:1291ā€“1300

    ArticleĀ  Google ScholarĀ 

  39. Gresham G, Schrack J, Gresham LM, Shinde AM, Hendifar AE, Tuli R et al (2018) Wearable activity monitors in oncology trials: Current use of an emerging technology. Contemp Clin Trials 64:13ā€“21

    ArticleĀ  Google ScholarĀ 

  40. Smith MT, McCrae CS, Cheung J, Martin JL, Harrod CG, Heald JL et al (2018) Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 14:1231ā€“1237

    ArticleĀ  Google ScholarĀ 

  41. Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A et al (2018) Just-in-time adaptive interventions (JITAIS) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med 52:446ā€“462

    ArticleĀ  Google ScholarĀ 

  42. Weber GM, Mandl KD, Kohane IS (2014) Finding the missing link for big biomedical data. JAMA 311:2479ā€“2480

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Martin Sanchez F, Sanchez FM, Gray K, Bellazzi R, Lopez-Campos G (2014) Exposome informatics: considerations for the design of future biomedical research information systems. J Am Med Inform Assoc 21:386ā€“390

    ArticleĀ  Google ScholarĀ 

  44. Alterovitz G, Warner J, Zhang P, Chen Y, Ullman-Cullere M, Kreda D et al (2015) SMART on FHIR Genomics: facilitating standardized clinico-genomic apps. J Am Med Inform Assoc 22:1173ā€“1178

    PubMedĀ  Google ScholarĀ 

  45. SĆ”ez C, Zurriaga O, PĆ©rez-PanadĆ©s J, Melchor I, Robles M, GarcĆ­a-GĆ³mez JM (2016) Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories. J Am Med Inform Assoc 23:1085ā€“1095

    ArticleĀ  Google ScholarĀ 

  46. ITU and WHO launch new initiative to leverage power of Artificial Intelligence for health. In: International telecommunication union [Internet]. Available https://www.itu.int/en/mediacentre/Pages/2018-pr18.aspx

  47. Fernandez-Luque L, Singh M, Ofli F, Mejova YA, Weber I, Aupetit M et al (2017) Implementing 360Ā° quantified self for childhood obesity: feasibility study and experiences from a weight loss camp in Qatar. BMC Med Inform Decis Mak 17:37

    ArticleĀ  Google ScholarĀ 

  48. Kushniruk AW, Triola MM, Borycki EM, Stein B, Kannry JL (2005) Technology induced error and usability: the relationship between usability problems and prescription errors when using a handheld application. Int J Med Inform 74:519ā€“526

    ArticleĀ  Google ScholarĀ 

  49. Borycki EM, Kushniruk AW (2008) Where do technology-induced errors come from? Towards a model for conceptualizing and diagnosing errors caused by technology. In: Human, social, and organizational aspects of health information systems, pp 148ā€“166

    Google ScholarĀ 

  50. Chakraborty S, Tomsett R, Raghavendra R, Harborne D, Alzantot M, Cerutti F, et al (2017) Interpretability of deep learning models: a survey of results. In: Smart world, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). https://doi.org/10.1109/uic-atc.2017.8397411

  51. Sly L (2018) US soldiers are revealing sensitive and dangerous information by jogging. In: The Washington post [Internet]. Available https://www.washingtonpost.com/world/the-us-military-reviews-its-rules-as-new-details-of-us-soldiers-and-bases-emerge/2018/01/29/6310d518-050f-11e8-aa61-f3391373867e_story.html?utm_term=.91cdbf6f3e38

  52. Froomkin AM, Michael Froomkin A, Kerr IR, Pineau J (2018) When AIs outperform doctors: the dangers of a tort-induced over-reliance on machine learning and what (not) to do about it. SSRN Electron J. https://doi.org/10.2139/ssrn.3114347

  53. Huckvale K, Prieto JT, Tilney M, Benghozi P-J, Car J (2015) Unaddressed privacy risks in accredited health and wellness apps: a cross-sectional systematic assessment. BMC Med 13. https://doi.org/10.1186/s12916-015-0444-y

  54. Yapo A, Weiss J (2018) Ethical implications of bias in machine learning. In: Proceedings of the 51st Hawaii international conference on system sciences. https://doi.org/10.24251/hicss.2018.668

  55. Hajian S, Bonchi F, Castillo C (2016) Algorithmic bias: from discrimination discovery to fairness-aware data mining. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data miningā€”KDD ā€™16, ACM Press, New York, USA, pp 2125ā€“2126

    Google ScholarĀ 

  56. Wilbanks JT, Topol EJ (2016) Stop the privatization of health data. Nature 535:345ā€“348

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Norman CD, Skinner HA (2006) eHealth literacy: essential skills for consumer health in a networked world. J Med Internet Res 8(2):e9

    ArticleĀ  Google ScholarĀ 

  58. Hu X, Hsueh P-YS, Chen C-H, Diaz KM, Parsons FE, Ensari I, Qian M, Cheung Y-KK An interpretable health behavioral intervention policy for mobile device users. IBM Journal of Research and Development 62 (1):4:1-4:6

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Fernandez-Luque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandez-Luque, L. et al. (2019). Health Lifestyle Data-Driven Applications Using Pervasive Computing. In: Househ, M., Kushniruk, A., Borycki, E. (eds) Big Data, Big Challenges: A Healthcare Perspective. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06109-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06109-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06108-1

  • Online ISBN: 978-3-030-06109-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics