Advertisement

Next-Generation Sequencing: Current Technologies and Applications

  • Dwarakanath Srinivas
  • Harsh Deora
Chapter

Abstract

The human body, apart from human cells, is composed of microbial flora, which plays an important role in various physiological processes, called as the human microbiome (Zoll et al. 2016). The Human Microbiome Project and the Metagenomics of the Human Intestinal Tract project have provided a glimpse into the microbial composition of different mucosa, like the skin, the gastrointestinal tract, the respiratory tract, and the urogenital tract (The NIH HMP Working Group et al. 2009; Huttenhower et al. 2012). Although fungi contribute less than 0.1% of the total microbiome, they contribute a major role in the various physiological and pathological processes of the body.

Keywords

Central nervous system Diagnostic methodology Fungal infections Future perspective Modern diagnosis Research mycology Sequencing 

Abbreviations

ALS

Amyotrophic lateral sclerosis

CNS

Central nervous system

HMP

Human Microbiome Project

ITS

Internal transcribed spacer

MetaHIT

Metagenomics of the Human Intestinal Tract

NGS

Next-generation sequencing

SNP

Single-nucleotide polymorphism

References

  1. Alonso R, Pisa D, Fernandez-fernandez AM, Rabano A, Carrasco L. Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiol Dis. 2017;108:249–60.CrossRefGoogle Scholar
  2. Araujo R. Towards the genotyping of fungi: methods, benefits and challenges. Curr Fungal Infect Rep. 2014;8:203–10.CrossRefGoogle Scholar
  3. Bittinger K, Charlson ES, Loy E, Shirley DJ, Haas AR, Laughlin A, et al. Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol. 2014;15:487.CrossRefGoogle Scholar
  4. Bueid A, Howard SJ, Moore CB, Richardson MD, Harrison E, et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010;65:2116–8.CrossRefGoogle Scholar
  5. Camps SMT, Dutilh BE, Arendrup MC, Rijs AJMM, Snelders E, Huynen MA, et al. Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One. 2012;7:e50034.CrossRefGoogle Scholar
  6. Dannemiller KC, Reeves D, Bibby K, Yamamoto N, Peccia J. Fungal high-throughput taxonomic identification tool for use with next-generation sequencing (FHiTINGS). J Basic Microbiol. 2014;54:315–21.CrossRefGoogle Scholar
  7. Decker SO, Sigl A, Grumaz C, et al. Immune-response patterns and next generation sequencing diagnostics for the detection of mycoses in patients with septic shock—results of a combined clinical and experimental investigation. Int J Mol Sci. 2017;18(8):1796.  https://doi.org/10.3390/ijms18081796.CrossRefPubMedCentralGoogle Scholar
  8. Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R, Rautemaa R, et al. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother. 2013;68:1486–96.CrossRefGoogle Scholar
  9. Garnaud C, Botterel F, Sertour N, Bougnoux M, Dannaoui E, Larrat S, et al. Next-generation sequencing offers new insights into the resistance of Candida spp. to echinocandins and azoles. J Antimicrob Chemother. 2015;70:2556–65.CrossRefGoogle Scholar
  10. Glaser CA, Honarmand S, Anderson LJ, et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis. 2006;43:1565–77.CrossRefGoogle Scholar
  11. Hagiwara D, Takahashi H, Watanabe A, Takahashi-Nakaguchi A, Kawamoto S, Kamei K, et al. Whole-genome comparison of Aspergillus fumigatus strains serially isolated from patients with Aspergillosis. J Clin Microbiol. 2014;52:4202–9.CrossRefGoogle Scholar
  12. Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009;15:1068–76.CrossRefGoogle Scholar
  13. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  14. Ianiri G, Idnurm A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. MBio. 2015;6(2):e02334–14.CrossRefGoogle Scholar
  15. Latgé JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12:310–50.CrossRefGoogle Scholar
  16. Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, et al. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother. 2011;55:4465–8.CrossRefGoogle Scholar
  17. Salzberg SL, Breitwieser FP, Kumar A, Hao H, Burger P, Rodriguez FJ, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol Neuroimmunol Neuroinflamm. 2016;3:e251.  https://doi.org/10.1212/NXI.0000000000000251.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Snelders E, van der Lee HA, Kuijpers J, Rijs AJ, Varga J, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008;5:e219.CrossRefGoogle Scholar
  19. Snelders E, Huis In ’t Veld RA, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75(12):4053–7.CrossRefGoogle Scholar
  20. The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.CrossRefGoogle Scholar
  21. Verweij PE, Howard SJ, Melchers WJ, Denning DW. Azole- resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat. 2009a;12:141–7.CrossRefGoogle Scholar
  22. Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2009b;9:789–95.CrossRefGoogle Scholar
  23. Wylie KM, Weinstock GM, Storch GA. Virome genomics: a tool for defining the human virome. Curr Opin Microbiol. 2013;16:479–84.CrossRefGoogle Scholar
  24. Zoll J, Snelders E, Verweij PE, Melchers WJG. Next-generation sequencing in the mycology lab. Curr Fungal Infect Rep. 2016;10:37–42.  https://doi.org/10.1007/s12281-016-0253-6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dwarakanath Srinivas
    • 1
  • Harsh Deora
    • 2
  1. 1.Department of NeurosurgeryNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia
  2. 2.National Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia

Personalised recommendations