Skip to main content

Abstract

Human fungal diseases now constitute a significant global health problem particularly in resource-poor countries with the emergence of human immunodeficiency virus ( HIV)/acquired immunodeficiency syndrome (AIDS), rapid increase in successful solid organ transplantations, and the expanding armamentarium of immunosuppressive drugs for treatment of cancers and autoimmune and rheumatological diseases. There is an urgent need for better diagnostic tools and a wider array of therapies to treat these lethal infections. Cryptococcal infection is one of the most common opportunistic infections. This “sugar-coated” yeast is a unique model of eukaryotic virulence. The pathology and immunopathogenic mechanism of Cryptococcus species are the most studied, and have helped in enhancing our understanding of fungal pathogenesis in general, developing robust diagnostic tests, as well as standardizing treatment modalities. However, there remain several unanswered questions as to how these pathogens cause disease within the central nervous system. Unravelling answers to these questions will provide new insights into organ-specific fungal pathogenesis and will help develop effective treatment reducing morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ART:

Antiretroviral therapy

BBB:

Blood-brain barrier

CM:

Cryptococcal meningitis

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DC:

Dendritic cell

EFA:

Early fungicidal activity

HAART:

Highly active antiretroviral therapy

GalXM:

Galactoxylomannan

GXM:

Glucuronoxylomannan

HIV:

Human immunodeficiency virus

IL:

Interleukin

INOS:

Inducible nitric oxide synthase

IRD:

Immune restoration disease

IRIS:

Immune reconstitution inflammatory syndrome

MP:

Mannoprotein

MRI:

Magnetic resonance imaging

TNF:

Tumor necrosis factor

References

  • Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol. 2006;16:2161–5.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Casadevall A. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol. 2007;8:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee U, Dutta K, Diwedi MSS. Cryptococcosis due to C. neoformans var. gattii: a short review and Indian clinical scenario. Nat J Infect Dis. 2001;2:32–6.

    Google Scholar 

  • Banerjee U, Datta K, Casadevall A. Serotype distribution of Cryptococcus neoformans in patients in a tertiary care center in India. Med Mycol. 2004;42:181–6.

    Article  PubMed  Google Scholar 

  • Beardsley J, Wolbers M, Kibengo FM, Ggayi A-BM, Kamali A, Cuc NTK, et al. Adjunctive dexamethasone in HIV-associated cryptococcal meningitis. N Engl J Med. 2016;374:542–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billmyre RB, Croll D, Li W, Mieczkowski P, Carter DA, Cuomo CA, et al. Highly recombinant VGII Cryptococcus gattii population develops clonal outbreak clusters through both sexual macroevolution and asexual microevolution. MBio. 2014;5:e01494–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulware DR, Bonham SC, Meya DB, Wiesner DL, Park GS, Kambugu A, et al. Paucity of initial cerebrospinal fluid inflammation in cryptococcal meningitis is associated with subsequent immune reconstitution inflammatory syndrome. J Infect Dis. 2010;202:962–70.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan KL, Murphy JW. What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis. 1998;4:71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes EJ, et al. First reported case of Cryptococcus gattii in the Southeastern USA: implications for travel-associated acquisition of an emerging pathogen. PLoS One. 2009;4(6):e5851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casadevall A, Pirofski LA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti A, Jatana M, Kumar P, Chatha L, Kaushal A, Padhye AA. Isolation of Cryptococcus neoformans var. gattii from Eucalyptus camaldulensis in India. J Clin Microbiol. 1997;35:3340–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Kwon-Chung KJ. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994;14:4912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun. 2004;72:4985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier C, Chretien F, Baudrimont M, Mordelet E, Lortholary O, Dromer F. Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am J Pathol. 2005;166:421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77:120–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Wright LC, Santangelo RT, Muller M, Moran VR, Kuchel PW, et al. Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infect Immun. 1997;65:405–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LC, Goldman DL, Doering TL, Pirofski LA, Casadevall A. Antibody response to Cryptococcus neoformans proteins in rodents and humans. Infect Immun. 1999;67:2218–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherniak R, Reiss E, Slodki ME, Plattner RD, Blumer SO. Structure and antigenic activity of the capsular polysaccharide of Cryptococcus neoformans serotype A. Mol Immunol. 1980;17:1025–32.

    Article  CAS  PubMed  Google Scholar 

  • Cherniak R, Reiss E, Turner SH. A galactoxylomannan antigen of Cryptococcus neoformans serotype A. Carbohydr Res. 1982;103:239–50. Available from: http://www.sciencedirect.com/science/article/pii/S0008621500806862

    Article  CAS  Google Scholar 

  • Chretien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J Infect Dis. 2002;186:522–30.

    Article  PubMed  Google Scholar 

  • Chrisman CJ, Albuquerque P, Guimaraes AJ, Nieves E, Casadevall A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog. 2011;7:e1002047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. Annu Rev Pathol. 2014;9:219–38.

    Article  CAS  PubMed  Google Scholar 

  • Collins HL, Bancroft GJ. Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect Immun. 1991;59:3883–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox GM, McDade HC, Chen SC, Tucker SC, Gottfredsson M, Wright LC, et al. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol. 2001;39:166–75.

    Article  CAS  PubMed  Google Scholar 

  • Day JN, Chau TTH, Wolbers M, Mai PP, Dung NT, Mai NH, et al. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013;368:1291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jesus M, Nicola AM, Chow S-K, Lee IR, Nong S, Specht CA, et al. Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence. 2010;1:500–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delfino D, Cianci L, Migliardo M, Mancuso G, Cusumano V, Corradini C, et al. Tumor necrosis factor-inducing activities of Cryptococcus neoformans components. Infect Immun. 1996;64:5199–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delfino D, Cianci L, Lupis E, Celeste A, Petrelli ML, Curro F, et al. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components. Infect Immun. 1997;65:2454–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denning DW, Armstrong RW, Lewis BH, Stevens DA. Elevated cerebrospinal fluid pressures in patients with cryptococcal meningitis and acquired immunodeficiency syndrome. Am J Med. 1991;91:267–72.

    Article  CAS  PubMed  Google Scholar 

  • Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974;80:176–81.

    Article  CAS  PubMed  Google Scholar 

  • Dong ZM, Murphy JW. Intravascular cryptococcal culture filtrate (CneF) and its major component, glucuronoxylomannan, are potent inhibitors of leukocyte accumulation. Infect Immun. 1995;63:770–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong ZM, Murphy JW. Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J Clin Invest. 1996;97:689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dromer F, Mathoulin-Pelissier S, Launay O, Lortholary O. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med. 2007;4:e21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond RA. Neuro-immune mechanisms of anti-cryptococcal protection. J Fungi (Basel). 2017;4:4.

    Article  CAS  Google Scholar 

  • Eigenheer RA, Jin Lee Y, Blumwald E, Phinney BS, Gelli A. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res. 2007;7:499–510.

    Article  CAS  PubMed  Google Scholar 

  • Eisenman HC, Casadevall A, McClelland EE. New insights on the pathogenesis of invasive Cryptococcus neoformans infection. Curr Infect Dis Rep. 2007;9:457–64.

    Article  PubMed  Google Scholar 

  • Ellerbroek PM, Hoepelman AIM, Wolbers F, Zwaginga JJ, Coenjaerts FEJ. Cryptococcal glucuronoxylomannan inhibits adhesion of neutrophils to stimulated endothelium in vitro by affecting both neutrophils and endothelial cells. Infect Immun. 2002;70:4762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun. 2000;68:4225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmesser M, Kress Y, Casadevall A. Intracellular crystal formation as a mechanism of cytotoxicity in murine pulmonary Cryptococcus neoformans infection. Infect Immun. 2001;69:2723–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82:736–54.

    Article  CAS  PubMed  Google Scholar 

  • French MA. HIV/AIDS: immune reconstitution inflammatory syndrome: a reappraisal. Clin Infect Dis. 2009;48:101–7.

    Article  PubMed  Google Scholar 

  • Garcia-Rodas R, Zaragoza O. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol Med Microbiol. 2012;64:147–61.

    Article  CAS  PubMed  Google Scholar 

  • Gazzoni AF, Oliveira F d M, Salles EF, Mayayo E, Guarro J, Capilla J, et al. Unusual morphologies of Cryptococcus spp. in tissue specimens: report of 10 cases. Rev Inst Med Trop Sao Paulo. 2010;52:145–9.

    Article  PubMed  Google Scholar 

  • Gerik KJ, Donlin MJ, Soto CE, Banks AM, Banks IR, Maligie MA, et al. Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans. Mol Microbiol. 2005;58:393–408.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert AS, Seoane PI, Sephton-Clark P, Bojarczuk A, Hotham R, Giurisato E, et al. Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5. Sci Adv. 2017;3:e1700898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Granger DL, Perfect JR, Durack DT. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest. 1985;76:508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin FMJ. Roles of macrophage Fc and C3b receptors in phagocytosis of immunologically coated Cryptococcus neoformans. Proc Natl Acad Sci U S A. 1981;78:3853–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero A, Fries BC. Phenotypic switching in Cryptococcus neoformans contributes to virulence by changing the immunological host response. Infect Immun. 2008;76:4322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Slechta ES, Gates-Hollingsworth MA, Neary B, Barker AP, Bauman S, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20:52–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healy ME, Dillavou CL, Taylor GE. Diagnostic medium containing inositol, urea, and caffeic acid for selective growth of Cryptococcus neoformans. J Clin Microbiol. 1977;6:387–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hole C, Wormley FLJ. Innate host defenses against Cryptococcus neoformans. J Microbiol. 2016;54:202–11.

    Article  CAS  PubMed  Google Scholar 

  • Hosseini-Moghaddam SM, Husain S. Fungi and molds following lung transplantation. Semin Respir Crit Care Med. 2010;31:222–33.

    Article  CAS  PubMed  Google Scholar 

  • Huang S-H, Long M, Wu C-H, Kwon-Chung KJ, Chang YC, Chi F, et al. Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3). J Biol Chem. 2011;286:34761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffnagle GB, Lipscomb MF. Cells and cytokines in pulmonary cryptococcosis. Res Immunol. 1998;149:387–96. Available from: http://www.sciencedirect.com/science/article/pii/S0923249498807621

    Article  CAS  PubMed  Google Scholar 

  • Huffnagle GB, Chen GH, Curtis JL, McDonald RA, Strieter RM, Toews GB. Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J Immunol. 1995;155:3507–16.

    CAS  PubMed  Google Scholar 

  • Jacobson ES, Emery HS. Temperature regulation of the cryptococcal phenoloxidase. J Med Vet Mycol. 1991;29:121–4.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson ES, Jenkins ND, Todd JM. Relationship between superoxide dismutase and melanin in a pathogenic fungus. Infect Immun. 1994;62:4085–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain N, Guerrero A, Fries BC. Phenotypic switching and its implications for the pathogenesis of Cryptococcus neoformans. FEMS Yeast Res. 2006;6:480–8.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis JN, Bicanic T, Loyse A, Namarika D, Jackson A, Nussbaum JC, et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes. Clin Infect Dis. 2014;58:736–45.

    Article  PubMed  Google Scholar 

  • Jarvis JN, Meintjes G, Bicanic T, Buffa V, Hogan L, Mo S, et al. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis. PLoS Pathog. 2015;11:e1004754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston SA, May RC. The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog. 2010;6:e1001041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jong A, Wu C-H, Shackleford GM, Kwon-Chung KJ, Chang YC, Chen H-M, et al. Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cell Microbiol. 2008;10:1313–26.

    Article  CAS  PubMed  Google Scholar 

  • Jong A, Wu C-H, Gonzales-Gomez I, Kwon-Chung KJ, Chang YC, Tseng H-K, et al. Hyaluronic acid receptor CD44 deficiency is associated with decreased Cryptococcus neoformans brain infection. J Biol Chem. 2012;287:15298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung WH, Sham A, White R, Kronstad JW. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 2006;4:e410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khanna N, Chandramuki A, Desai A, Ravi V. Cryptococcal infections of the central nervous system: an analysis of predisposing factors, laboratory findings and outcome in patients from South India with special reference to HIV infection. J Med Microbiol. 1996;45:376–9.

    Article  CAS  PubMed  Google Scholar 

  • Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A. 2004;101:17258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozel TR, Gotschlich EC. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982;129:1675–80.

    CAS  PubMed  Google Scholar 

  • Kozel TR, Mastroianni RP. Inhibition of phagocytosis by cryptococcal polysaccharide: dissociation of the attachment and ingestion phases of phagocytosis. Infect Immun. 1976;14:62–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozel TR, Pfrommer GS. Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun. 1986;52:1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozel TR, Highison B, Stratton CJ. Localization on encapsulated Cryptococcus neoformans of serum components opsonic for phagocytosis by macrophages and neutrophils. Infect Immun. 1984;43:574–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozel TR, Pfrommer GS, Guerlain AS, Highison BA, Highison GJ. Role of the capsule in phagocytosis of Cryptococcus neoformans. Rev Infect Dis. 1988;10(Suppl 2):S436–9.

    Article  PubMed  Google Scholar 

  • Kozubowski L, Heitman J. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol Rev. 2012;36:78–94.

    Article  CAS  PubMed  Google Scholar 

  • Kraus PR, Nichols CB, Heitman J. Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot Cell. 2005;4:1079–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung KJ, Bennett JE. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol. 1984;120:123–30.

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ, Hill WB, Bennett JE. New, special stain for histopathological diagnosis of cryptococcosis. J Clin Microbiol. 1981;13:383–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Dickson DW, Casadevall A. Pathology of cryptococcal meningoencephalitis: analysis of 27 patients with pathogenetic implications. Hum Pathol. 1996a;27:839–47.

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Casadevall A, Dickson DW. Immunohistochemical localization of capsular polysaccharide antigen in the central nervous system cells in cryptococcal meningoencephalitis. Am J Pathol. 1996b;148:1267–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leite AGB, Vidal JE, Bonasser Filho F, Nogueira RS, de Oliveira ACP. Cerebral infarction related to cryptococcal meningitis in an HIV-infected patient: case report and literature review. Braz J Infect Dis. 2004;8:175–9.

    Article  PubMed  Google Scholar 

  • Levitz SM, Specht CA. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 2006;6:513–24.

    Article  CAS  PubMed  Google Scholar 

  • Lipovsky MM, Tsenova L, Coenjaerts FE, Kaplan G, Cherniak R, Hoepelman AI. Cryptococcal glucuronoxylomannan delays translocation of leukocytes across the blood-brain barrier in an animal model of acute bacterial meningitis. J Neuroimmunol. 2000;111:10–4.

    Article  CAS  PubMed  Google Scholar 

  • Litvintseva AP, Xu J, Mitchell TG. Population structure and ecology of Cryptococcus neoformans and Cryptococcus gattii. In: Cryptococcus. Washington, DC: American Society of Microbiology; 2011. p. 97–111. https://doi.org/10.1128/9781555816858.ch08.

    Chapter  Google Scholar 

  • Liu T-B, Perlin DS, Xue C. Molecular mechanisms of cryptococcal meningitis. Virulence. 2012;3:173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Long M, Huang S-H, Wu C-H, Shackleford GM, Jong A. Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells. J Biomed Sci. 2012;19:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luberto C, Toffaletti DL, Wills EA, Tucker SC, Casadevall A, Perfect JR, et al. Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 2001;15:201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Croudace JE, Lammas DA, May RC. Expulsion of live pathogenic yeast by macrophages. Curr Biol. 2006;16:2156–60.

    Article  CAS  PubMed  Google Scholar 

  • Markaryan A, Morozova I, Yu H, Kolattukudy PE. Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect Immun. 1994;62:2149–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruvada R, Zhu L, Pearce D, Zheng Y, Perfect J, Kwon-Chung KJ, et al. Cryptococcus neoformans phospholipase B1 activates host cell Rac1 for traversal across the blood-brain barrier. Cell Microbiol. 2012;14:1544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monari C, Bistoni F, Vecchiarelli A. Glucuronoxylomannan exhibits potent immunosuppressive properties. FEMS Yeast Res. 2006;6:537–42.

    Article  CAS  PubMed  Google Scholar 

  • Neal LM, Xing E, Xu J, Kolbe JL, Osterholzer JJ, Segal BM, et al. CD4(+) T cells orchestrate lethal immune pathology despite fungal clearance during Cryptococcus neoformans meningoencephalitis. MBio. 2017;8 https://doi.org/10.1128/mBio.01415-17.

  • Nielsen K, De Obaldia AL, Heitman J. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell. 2007;6:949–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosanchuk JD, Casadevall A. Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect Immun. 1997;65:1836–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olszewski MA, Noverr MC, Chen G-H, Toews GB, Cox GM, Perfect JR, et al. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol. 2004;164:1761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23:525–30.

    Article  PubMed  Google Scholar 

  • Perfect JR, Casadevall A. Cryptococcosis. Infect Dis Clin N Am. 2002;16:837–74. v–vi

    Article  Google Scholar 

  • Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50:291–322.

    Article  PubMed  Google Scholar 

  • Pirofski LA, Casadevall A. Immune-mediated damage completes the parabola: Cryptococcus neoformans pathogenesis can reflect the outcome of a weak or strong immune response. MBio. 2017;8:6–10.

    Article  Google Scholar 

  • Polacheck I, Platt Y, Aronovitch J. Catecholamines and virulence of Cryptococcus neoformans. Infect Immun. 1990;58:2919–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powderly WG. Cryptococcal meningitis in HIV-infected patients. Curr Infect Dis Rep. 2000;2:352–7.

    Article  CAS  PubMed  Google Scholar 

  • Pyrgos V, Seitz AE, Steiner CA, Prevots DR, Williamson PR. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS One. 2013;8:e56269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Davis MJ, Dayrit JK, Hadd Z, Meister DL, Osterholzer JJ, et al. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice. PLoS One. 2012;7:e47853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan VV, Mathai A, Shanmugham J, Mathews GJ. The role of hyaluronidase in experimental cryptococcal infections. Surg Neurol. 1982;17:239–44.

    Article  CAS  PubMed  Google Scholar 

  • Retini C, Vecchiarelli A, Monari C, Bistoni F, Kozel TR. Encapsulation of Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infect Immun. 1998;66:664–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR, Powderly WG, et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis. 2000;30:710–8.

    Article  CAS  PubMed  Google Scholar 

  • Sabiiti W, May RC. Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells. PLoS One. 2012;7:e35455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanfelice F. Contributo alla morfologia e biologia dei blastomiceti che si sviluppano nei succhi di alcuni frutti. Ann Ig. 1894;4:463–95.

    Google Scholar 

  • Santangelo R, Zoellner H, Sorrell T, Wilson C, Donald C, Djordjevic J, et al. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect Immun. 2004;72:2229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satishchandra P, Nalini A, Gourie-Devi M, Khanna N, Santosh V, Ravi V, et al. Profile of neurologic disorders associated with HIV/AIDS from Bangalore, south India (1989–96). Indian J Med Res. 2000;111:14–23.

    CAS  PubMed  Google Scholar 

  • Scriven JE, Graham LM, Schutz C, Scriba TJ, Wilkinson KA, Wilkinson RJ, et al. The CSF immune response in HIV-1-associated cryptococcal meningitis: macrophage activation, correlates of disease severity, and effect of antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;75:299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar SK, Mahadevan A, Satishchandra P, Kumar RU, Yasha TC, Santosh V, et al. Neuropathology of HIV/AIDS with an overview of the Indian scene. Indian J Med Res. 2005;121:468–88.

    CAS  PubMed  Google Scholar 

  • Shankar SK, Mahadevan A, Sundaram C, Sarkar C, Chacko G, Lanjewar DN, et al. Pathobiology of fungal infections of the central nervous system with special reference to the Indian scenario. Neurol India. 2007;55:198–215.

    Article  CAS  PubMed  Google Scholar 

  • Shaw CE, Kapica L. Production of diagnostic pigment by phenoloxidase activity of Cryptococcus neoformans. Appl Microbiol. 1972;24:824–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shea JM, Kechichian TB, Luberto C, Del Poeta M. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect Immun. 2006;74:5977–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Li SS, Zheng C, Jones GJ, Kim KS, Zhou H, et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest. 2010;120:1683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui AA, Brouwer AE, Wuthiekanun V, Jaffar S, Shattock R, Irving D, et al. IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J Immunol. 2005;174:1746–50.

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Forrest G. Cryptococcosis in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S192–8.

    Article  PubMed  Google Scholar 

  • Singh N, Alexander BD, Lortholary O, Dromer F, Gupta KL, John GT, et al. Cryptococcus neoformans in organ transplant recipients: impact of calcineurin-inhibitor agents on mortality. J Infect Dis. 2007;195:756–64.

    Article  PubMed  Google Scholar 

  • Smith LM, Dixon EF, May RC. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation. Cell Microbiol. 2015;17:702–13.

    Article  CAS  PubMed  Google Scholar 

  • Staib F. Cryptococcus neoformans and Guizotia abyssinica (syn. G. oleifera D.C.). (Colour reaction for Cr. neoformans.). Zeitschrift Hyg Infekt. 1962;148:466–75.

    Article  Google Scholar 

  • Steen BR, Zuyderduyn S, Toffaletti DL, Marra M, Jones SJM, Perfect JR, et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell. 2003;2:1336–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjia TL, Yeow YK, Tan CB. Cryptococcal meningitis. J Neurol Neurosurg Psychiatry. 1985;48:853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi S, Patro I, Mahadevan A, Patro N, Phillip M, Shankar SK. Glial alterations in tuberculous and cryptococcal meningitis and their relation to HIV co-infection—a study on human brains. J Infect Dev Ctries. 2014;8:1421–43.

    Article  PubMed  Google Scholar 

  • Vecchiarelli A, Pietrella D, Dottorini M, Monari C, Retini C, Todisco T, et al. Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin Exp Immunol. 1994a;98:217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli A, Dottorini M, Pietrella D, Monari C, Retini C, Todisco T, et al. Role of human alveolar macrophages as antigen-presenting cells in Cryptococcus neoformans infection. Am J Respir Cell Mol Biol. 1994b;11:130–7.

    Article  CAS  PubMed  Google Scholar 

  • Velagapudi R, Hsueh Y-P, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun. 2009;77:4345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu K, Tham R, Uhrig JP, Thompson GR 3rd, Na Pombejra S, Jamklang M, et al. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. MBio. 2014;5:e01101–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wadia RS, Pujari SN, Kothari S, Udhar M, Kulkarni S, Bhagat S, et al. Neurological manifestations of HIV disease. J Assoc Physicians India. 2001;49:343–8.

    CAS  PubMed  Google Scholar 

  • Wang Y, Casadevall A. Growth of Cryptococcus neoformans in presence of L-dopa decreases its susceptibility to amphotericin B. Antimicrob Agents Chemother. 1994;38:2648–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong B, Perfect JR, Beggs S, Wright KA. Production of the hexitol D-mannitol by Cryptococcus neoformans in vitro and in rabbits with experimental meningitis. Infect Immun. 1990;58:1664–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C-Y, Zhu H-M, Wu J-H, Wen H, Liu C-J. Increased permeability of blood-brain barrier is mediated by serine protease during Cryptococcus meningitis. J Int Med Res. 2014;42:85–92.

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Tada Y, Dong X, Heitman J. The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe. 2007;1:263–73.

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Liu T, Chen L, Li W, Liu I, Kronstad JW, et al. Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. MBio. 2010;1:e00084–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaragoza O. Multiple disguises for the same party: the concepts of morphogenesis and phenotypic variations in Cryptococcus neoformans. Front Microbiol. 2011;2:181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodriguez-Tudela JL, et al. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol. 2008;10:2043–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol. 2009;68:133–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 2004;5:1–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahadevan, A., Susarla, S.K. (2019). Cryptococcosis. In: Turgut, M., Challa, S., Akhaddar, A. (eds) Fungal Infections of the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-030-06088-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06088-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06087-9

  • Online ISBN: 978-3-030-06088-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics