Skip to main content

Ion-Exchange Chromatography in Separation and Purification of Beverages

  • Chapter
  • First Online:
Book cover Applications of Ion Exchange Materials in Chemical and Food Industries

Abstract

Beverage industries including water treatment industry, employ ion-exchange chromatography in different forms in several processes to remove chemicals, ions, additives, colourants or harmful substances from drinks. The ion-exchange materials employed are nonreactive and physiochemically stable, and therefore, are a suitable choice for beverage treatment. The most widespread use of ion-exchange process is in the water treatment industry; seawater and brackish water desalination, water softening, removal of heavy metals, harmful ions and dissolved organic contaminants. The ion-exchange chromatography used in these industrial processes is the courtesy of the processes: electrodialysis and electrodeionization, both of which use ion-exchange membranes and the latter use ion-exchange resins also. Excessive organic acids are removed from acidic fruit juices and wine using the same ion-exchange techniques. Electrodialysis and electrodeionization, along with their modifications and combination with other membrane filtration techniques, prove to be the most efficient in beverage treatment for best quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zagorodni AA (2006) Ion exchange materials: properties and applications. Elsevier, Amsterdam

    Chapter  Google Scholar 

  2. Ghaffour N, Bundschuh J, Mahmoudi H, Goosen MF (2015) Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems. Desalination 356:94–114

    Article  CAS  Google Scholar 

  3. Zheng X-Y, Pan S-Y, Tseng P-C, Zheng H-L, Chiang P-C (2018) Optimization of resin wafer electrodeionization for brackish water desalination. Sep Purif Technol 194:346–354

    Article  CAS  Google Scholar 

  4. Alvarado L, Chen A (2014) Electrodeionization: principles, strategies and applications. Electrochim Acta 132:583–597

    Article  CAS  Google Scholar 

  5. Lopez AM, Williams M, Paiva M, Demydov D, Do TD, Fairey JL, Lin YJ, Hestekin JA (2017) Potential of electrodialytic techniques in brackish desalination and recovery of industrial process water for reuse. Desalination 409:108–114

    Article  CAS  Google Scholar 

  6. Voutchkov N (2018) Energy use for membrane seawater desalination—current status and trends. Desalination 431:2–14

    Article  CAS  Google Scholar 

  7. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288

    Article  CAS  Google Scholar 

  8. Singh R, Hankins N (2016) Emerging membrane technology for sustainable water treatment. Elsevier, Amsterdam

    Google Scholar 

  9. Etzel JE, Wachinski (1997) AM environmental ion exchange: principles and design. In: IWA leading-edge conference on water and wastewater treatment technologies. CRC Press LLC, Boca Raton, Florida

    Google Scholar 

  10. Arar Ö, Yüksel Ü, Kabay N, Yüksel M (2014) Demineralization of geothermal water reverse osmosis (RO) permeate by electrodeionization (EDI) with mixed bed configuration. Desalination 342:23–28

    Article  CAS  Google Scholar 

  11. Pan S-Y, Snyder SW, Ma H-W, Lin YJ, Chiang P-C (2017) Development of a resin wafer electrodeionization process for impaired water desalination with high energy efficiency and productivity. ACS Sustain Chem Eng 5(4):2942–2948

    Article  CAS  Google Scholar 

  12. Pan S-Y, Snyder SW, Ma H-W, Lin YJ, Chiang P-C (2018) Energy-efficient resin wafer electrodeionization for impaired water reclamation. J Clean Prod 174:1464–1474

    Article  CAS  Google Scholar 

  13. Jacob C (2007) Seawater desalination: boron removal by ion exchange technology. Desalination 205(1–3):47–52

    Article  CAS  Google Scholar 

  14. Bellizzi V, DeNicola L, Minutolo R, Russo D, Cianciaruso B, Andreucci M, Conte G, Andreucci V (1999) Effects of water hardness on urinary risk factors for kidney stones in patients with idiopathic nephrolithiasis. Nephron 81(Suppl. 1):66–70

    Article  CAS  Google Scholar 

  15. Yildiz E, Nuhoglu A, Keskinler B, Akay G, Farizoglu B (2003) Water softening in a crossflow membrane reactor. Desalination 159(2):139–152

    Article  CAS  Google Scholar 

  16. Indarawis KA, Boyer TH (2013) Superposition of anion and cation exchange for removal of natural water ions. Sep Purif Technol 118:112–119

    Article  CAS  Google Scholar 

  17. Seo S-J, Jeon H, Lee JK, Kim G-Y, Park D, Nojima H, Lee J, Moon S-H (2010) Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res 44(7):2267–2275

    Article  CAS  Google Scholar 

  18. Del Gobbo LC, Imamura F, Wu JH, de Oliveira Otto MC, Chiuve SE, Mozaffarian D (2013) Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies–. Am J Clin Nutr 98(1):160–173

    Article  Google Scholar 

  19. Tang SC, Birnhack L, Cohen Y, Lahav O (2018) Selective separation of divalent ions from seawater using an integrated ion-exchange/nanofiltration approach. Chem Eng Processing Process

    Google Scholar 

  20. Entezari MH, Tahmasbi M (2009) Water softening by combination of ultrasound and ion exchange. Ultrason Sonochem 16(3):356–360

    Article  CAS  Google Scholar 

  21. Xue Z, Li Z, Ma J, Bai X, Kang Y, Hao W, Li R (2014) Effective removal of Mg2+ and Ca2+ ions by mesoporous LTA zeolite. Desalination 341:10–18

    Article  CAS  Google Scholar 

  22. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36(2):155–163

    Article  CAS  Google Scholar 

  23. Alvarado L, Ramírez A, Rodríguez-Torres I (2009) Cr (VI) removal by continuous electrodeionization: study of its basic technologies. Desalination 249(1):423–428

    Article  CAS  Google Scholar 

  24. Alvarado L, Torres IR, Chen A (2013) Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater. Sep Purif Technol 105:55–62

    Article  CAS  Google Scholar 

  25. Morales KH, Ryan L, Kuo T-L, Wu M-M, Chen C-J (2000) Risk of internal cancers from arsenic in drinking water. Environ Health Perspect 108(7):655

    Article  CAS  Google Scholar 

  26. Basha CA, Selvi SJ, Ramasamy E, Chellammal S (2008) Removal of arsenic and sulphate from the copper smelting industrial effluent. Chem Eng J 141(1–3):89–98

    Article  CAS  Google Scholar 

  27. Yeon K-H, Song J-H, Moon S-H (2004) A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant. Water Res 38(7):1911–1921

    Article  CAS  Google Scholar 

  28. Souilah O, Akretche D, Amara M (2004) Water reuse of an industrial effluent by means of electrodeionisation. Desalination 167:49–54

    Article  CAS  Google Scholar 

  29. Smara A, Delimi R, Chainet E, Sandeaux J (2007) Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process. Sep Purif Technol 57(1):103–110

    Article  CAS  Google Scholar 

  30. Dermentzis K, Christoforidis A, Valsamidou E (2011) Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. Int J Environ Sci 1(5):697

    CAS  Google Scholar 

  31. Dermentzis K (2010) Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization. J Hazard Mater 173(1–3):647–652

    Article  CAS  Google Scholar 

  32. Dermentzis K, Davidis A, Dermentzi A, Chatzichristou C (2010) An electrostatic shielding-based coupled electrodialysis/electrodeionization process for removal of cobalt ions from aqueous solutions. Water Sci Technol 62(8):1947–1953

    Article  CAS  Google Scholar 

  33. Spiegel E, Thompson P, Helden D, Doan H, Gaspar D, Zanapalidou H (1999) Investigation of an electrodeionization system for the removal of low concentrations of ammonium ions. Desalination 123(1):85–92

    Article  CAS  Google Scholar 

  34. Alharati A, Swesi Y, Fiaty K, Charcosset C (2017) Boron removal in water using a hybrid membrane process of ion exchange resin and microfiltration without continuous resin addition. J Water Process Eng 17:32–39

    Article  Google Scholar 

  35. Wen R, Deng S, Zhang Y (2005) The removal of silicon and boron from ultra-pure water by electrodeionization. Desalination 181(1–3):153–159

    Article  CAS  Google Scholar 

  36. El Midaoui A, Elhannouni F, Taky M, Chay L, Sahli MAM, Echihabi L, Hafsi M (2002) Optimization of nitrate removal operation from ground water by electrodialysis. Sep Purif Technol 29(3):235–244

    Article  Google Scholar 

  37. Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M (2018) Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review. Chemosphere 190:54–71

    Article  Google Scholar 

  38. Levchuk I, Márquez JJR, Sillanpää M (2017) Removal of natural organic matter (NOM) from water by ion exchange—a review. Chemosphere

    Google Scholar 

  39. Apell JN, Boyer TH (2010) Combined ion exchange treatment for removal of dissolved organic matter and hardness. Water Res 44(8):2419–2430

    Article  CAS  Google Scholar 

  40. Comstock SE, Boyer TH (2014) Combined magnetic ion exchange and cation exchange for removal of DOC and hardness. Chem Eng J 241:366–375

    Article  CAS  Google Scholar 

  41. Bhattacharjee C, Saxena V, Dutta S (2017) Fruit juice processing using membrane technology: a review. Innovative Food Sci Emerg Technol 43:136–153

    Article  CAS  Google Scholar 

  42. Vera E, Sandeaux J, Persin F, Pourcelly G, Dornier M, Ruales J (2007) Deacidification of clarified tropical fruit juices by electrodialysis. Part I. Influence of operating conditions on the process performances. J Food Eng 78(4):1427–1438

    Article  CAS  Google Scholar 

  43. Vera E, Sandeaux J, Persin F, Pourcelly G, Dornier M, Piombo G, Ruales J (2007) Deacidification of clarified tropical fruit juices by electrodialysis. Part II. Characteristics of the deacidified juices. J Food Eng 78(4):1439–1445

    Article  CAS  Google Scholar 

  44. Kang YJ, Rhee KC (2002) Deacidification of mandarin orange juice by electrodialysis combined with ultrafiltration. Nutraceuticals Food 7(4):411–416

    CAS  Google Scholar 

  45. Vera E, Ruales J, Dornier M, Sandeaux J, Persin F, Pourcelly G, Vaillant F, Reynes M (2003) Comparison of different methods for deacidification of clarified passion fruit juice. J Food Eng 59(4):361–367

    Article  Google Scholar 

  46. Vera E, Ruales J, Dornier M, Sandeaux J, Sandeaux R, Pourcelly G (2003) Deacidification of clarified passion fruit juice using different configurations of electrodialysis. J Chem Technol Biotechnol 78(8):918–925

    Article  CAS  Google Scholar 

  47. Vera E, Sandeaux J, Persin F, Pourcelly G, Dornier M, Ruales J (2009) Deacidification of passion fruit juice by electrodialysis with bipolar membrane after different pretreatments. J Food Eng 90(1):67–73

    Article  CAS  Google Scholar 

  48. Rozoy E, Boudesocque L, Bazinet L (2015) Deacidification of cranberry juice by electrodialysis with bipolar membranes. J Agric Food Chem 63(2):642–651

    Article  CAS  Google Scholar 

  49. Serre E, Rozoy E, Pedneault K, Lacour S, Bazinet L (2016) Deacidification of cranberry juice by electrodialysis: impact of membrane types and configurations on acid migration and juice physicochemical characteristics. Sep Purif Technol 163:228–237

    Article  CAS  Google Scholar 

  50. Mangindaan D, Khoiruddin K, Wenten I (2017) Beverage dealcoholization processes: past, present, and future. Trends Food Sci Technol

    Google Scholar 

  51. Ibeas V, Correia AC, Jordão AM (2015) Wine tartrate stabilization by different levels of cation exchange resin treatments: impact on chemical composition, phenolic profile and organoleptic properties of red wines. Food Res Int 69:364–372

    Article  CAS  Google Scholar 

  52. Lasanta C, Caro I, Pérez L (2013) The influence of cation exchange treatment on the final characteristics of red wines. Food Chem 138(2–3):1072–1078

    Article  CAS  Google Scholar 

  53. Palacios V, Caro I, Pérez L (2001) Application of ion exchange techniques to industrial process of metal ions removal from wine. Adsorption 7(2):131–138

    Article  CAS  Google Scholar 

  54. Sarmento M, Oliveira J, Slatner M, Boulton R (1999) Kinetics of the adsorption of bovine serum albumin contained in a model wine solution by non-swelling ion-exchange resins. J Food Eng 39(1):65–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibullah Nadeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, M.R. et al. (2019). Ion-Exchange Chromatography in Separation and Purification of Beverages. In: Inamuddin, Rangreez, T., M. Asiri, A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06085-5_8

Download citation

Publish with us

Policies and ethics