Skip to main content

Abstract

Ion-exchange resins (IERs) possess the capability of catalyzing several classes of reactions, apart from their ability to make separations. In fact, it is possible to synthesize tailor-made IERs for the reactive processes at hand. Use of IERs can fetch a number of advantages compared to those of homogeneous catalysts and other solid catalysts. Reactive separation (RS) is a relatively new process technology that has the potential to offer several advantages over the conventional approach of reaction followed by separation. Various separation steps can be coupled with the reaction, including: distillation, extraction, chromatography, crystallization and separation by membranes. This chapter reviews the salient features and industrial applications of reactive separations using IERs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A-15:

Amberlyst 15

AEM:

Anion-exchange membrane

CD:

Catalytic distillation

CEM:

Cation-exchange membrane

CSTR:

Continuous stirred tank reactor

FBCR:

Fixed bed chromatographic reactor

GCE:

Green chemistry and engineering

IER:

Ion-exchange resin

LAB sulphonate:

Linear alkyl-benzene sulfonate

LPG:

Liquefied petroleum gas

PI:

Process intensification

RA:

Reactive absorption

RC:

Reactive chromatography

RCond:

Reactive condensation

RCr:

Reactive crystallization

RD:

Reactive distillation

RM:

Reactive membrane

RPr:

Reactive precipitation

RS:

Reactive separation

RStr:

Reactive stripping

SCMCR:

Simulated counter current moving bed chromatographic reactor

SMBR:

Simulated moving-bed reactor

UO:

Unit operations

UP:

Unit processes

VLE:

Vapor–liquid equilibrium

VLLE:

Vapor–liquid–liquid equilibrium

References

  1. Hans JG (2003) A general approach for the conceptual design of counter-current reactive separations. Chem Eng Sci 58:809–814. https://doi.org/10.1016/S0009-2509(02)00611-5

    Article  CAS  Google Scholar 

  2. Schembecker G, Tlatlik S (2003) Process synthesis for reactive separations. Chem Eng Process 42:179–189. https://doi.org/10.1016/S0255-2701(02)00087-9

    Article  CAS  Google Scholar 

  3. Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process 42:137–144. https://doi.org/10.1016/S0255-2701(02)00084-3

    Article  CAS  Google Scholar 

  4. Kloker M, KenigY E, Hoffmann A, Kreis P, Gorak A (2005) Rate-based modelling and simulation of reactive separations in gas/vapour—liquid systems. Chem Eng Process 44:617–629. https://doi.org/10.1016/j.cep.2003.12.011

    Article  CAS  Google Scholar 

  5. Taylor R, Krishna R (2000) Modelling reactive distillation. Chem Eng Sci 55:5183–5229. https://doi.org/10.1016/S0009-2509(00)00120-2

    Article  CAS  Google Scholar 

  6. Tuchlenski A, Beckmann A, Reusch D, Dussel R, Weidlich U, Janowsky R (2001) Reactive distillation—industrial applications, process design & scale-up. Chem Eng Sci 56:387–394. https://doi.org/10.1016/S0009-2509(00)00240-2

    Article  CAS  Google Scholar 

  7. Chakrabarti A, Sharma MM (1993) Cationic ion exchange resins as catalyst. React Polym 20:1–45. https://doi.org/10.1016/0923-1137(93)90064-M

    Article  CAS  Google Scholar 

  8. Sharma MM (1995) Some novel aspects of cationic ion-exchange resins as catalysts. React Funct Polym 26:3–23. https://doi.org/10.1016/1381-5148(95)00029-F

    Article  CAS  Google Scholar 

  9. Irving AM, John MR (1997) A history of the origin and development of macroporous ion-exchange resins. React Funct Polym 35:7–22. https://doi.org/10.1016/S1381-5148(97)00058-8

    Article  Google Scholar 

  10. Harmer A, Sun Q (2001) Solid acid catalysis using ion-exchange resins. Appl Catal 221:45–62. https://doi.org/10.1016/S0926-860X(01)00794-3

    Article  CAS  Google Scholar 

  11. Spiro AD (2009) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48:388–398. https://doi.org/10.1021/ie801242v

    Article  CAS  Google Scholar 

  12. Backhaus AA (1921) Continuous processes for the manufacture of esters. US patent 1400849

    Google Scholar 

  13. Sharma MM, Mahajani SM (2002) Industrial applications of reactive distillation. In: Kai S, Kienle A (ed) Reactive distillation status and future directions, Wiley, pp 3–29

    Google Scholar 

  14. Towler GP, Frey SJ (2002) Reactive distillation. In: Kulprathipanja (ed) Reactive separation processes, Taylor and Francis, New York, pp 18–50

    Chapter  Google Scholar 

  15. Mahajan YS, Shah AK, Kamath RS, Salve Mahajani S M, Nandkumar B (2008) Recovery of trifluoroacetic acid from dilute aqueous solutions by reactive distillation. Sep Purif Technol 59:58–66. https://doi.org/10.1016/j.seppur.2007.05.027

    Article  CAS  Google Scholar 

  16. Shinde VM, Patil GN, Katariya A, Mahajan YS (2015) Production of tetrahydrofuran by dehydration of 1,4-butanediol using Amberlyst-15: batch kinetics and batch reactive distillation. Chem Eng Process 95:241–248. https://doi.org/10.1016/j.cep.2015.06.016

    Article  CAS  Google Scholar 

  17. Talnikar VD, Deorukhkar OA, Katariya A, Mahajan YS (2017) Value-added esterification for the recovery of trifluoroacetic acid: batch kinetics and reactive distillation studies. Chem Eng Commun 204:356–364. https://doi.org/10.1080/00986445.2016.1271795

    Article  CAS  Google Scholar 

  18. Mahajan YS, Kamath RS, Kumbhar PS, Mahajani SM (2008) Self-condensation of cyclohexanone over ion exchange resin catalysts: kinetics and selectivity aspects. Ind Eng Chem Res 47:25–33. https://doi.org/10.1021/ie061275b

    Article  CAS  Google Scholar 

  19. Popken T, Steinigeweg S, Gmehling J (2001) Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: experiments and simulation. Ind Eng Chem Res 40:1566–1574. https://doi.org/10.1021/ie0007419

    Article  CAS  Google Scholar 

  20. Carr RW, Dandekar HW (2002) Adsorption with reactionin. In: Kulprathipanja (ed) Reactive separation processes, Taylor and Francis, New York, pp 15–153

    Google Scholar 

  21. Oh J, Agrawal G, Sreedhar B, Donaldson EM, Schultz KA, Frank CT, Bommarius SA, Kawajiri Y (2014) Conversion improvement for catalytic synthesis of propylene glycol methyl ether acetate by reactive chromatography: experiments and parameter estimation. Chem Eng J 1360:196–208. https://doi.org/10.1016/j.cej.2014.08.008

    Article  CAS  Google Scholar 

  22. Strohlein G, Assuncao Y, Dube N, Bardow A, Mazzotti M, Morbidelli M (2006) Esterification of acrylic acid with methanol by reactive chromatography: experiments and simulations. Chem Eng Sci 61:5296–5306. https://doi.org/10.1016/j.ces.2006.04.004

    Article  CAS  Google Scholar 

  23. Lode F, Francesconi G, Mazzotti M, Morbidelli M (2003) Synthesis of methylacetate in a simulated moving-bed reactor: experiments and modeling. Am Inst Chem Eng J 49:1516–1524. https://doi.org/10.1002/aic.690490615

    Article  CAS  Google Scholar 

  24. Krishna R (2002) Reactive separations: more ways to skin a cat. Chem Eng Sci 57:1491–1504. https://doi.org/10.1016/S0009-2509(02)00020-9

    Article  CAS  Google Scholar 

  25. Wardell JM, King CJ (1978) Solvent equilibria for extraction of carboxylic acids from water. J Chem Eng Data 23:144–148. https://doi.org/10.1021/je60077a009

    Article  CAS  Google Scholar 

  26. Wasewar KL, Pangarkar VG, Heesink ABM, Versteeg GF (2003) Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction. Chem Eng Sci 58:3385–3393. https://doi.org/10.1016/S0009-2509(03)00221-5

    Article  CAS  Google Scholar 

  27. Brunt VV, Kanel JS (2002) Extraction with reaction. In: Kulprathipanja (ed) Reactive separation processes. Taylor and Francis, New York, pp 51–90

    Google Scholar 

  28. Nath K (2012) Membrane separation processes. Prentice Hall of India, Eastern Economy Edition, New Delhi

    Google Scholar 

  29. Jaroszek H, Dydo P (2015) Ion-exchange membranes in chemical synthesis—a review. Open Chem 14:1–19. https://doi.org/10.1515/chem-2016-0002

    Article  CAS  Google Scholar 

  30. Kwak E, Kim S, Kim J (2012) Effect of ion exchange resin on increased surface area crystallization process for purification of vancomycin. Korean J Chem Eng 29:1487–1492. https://doi.org/10.1007/s11814-012-0135-8

    Article  CAS  Google Scholar 

  31. Kelkar VV, Samant KD, Ng KM (2002) Reactive crystallization. In: Kulprathipanja (ed) Reactive separation processes, Taylor and Francis, New York, pp 209–245

    Chapter  Google Scholar 

  32. Kim S, Kim J (2015) Investigation on the role of ion exchange resin in the crystallization process for the purification of vancomycin. Korean J Chem Eng 32:465–470. https://doi.org/10.1007/s11814-014-0222-0

    Article  CAS  Google Scholar 

  33. Seidlitz F, Mathieu C, Breysse J, Houzelot JL (2001) Simultaneous synthesis and separation of a product by cooling crystallization into a multifunctional reactor. In: 2nd international conference on multifunctional reactors, Nuremberg

    Google Scholar 

  34. Sun Y, Song X, Jin M, Jin W, Yu J (2013) Gas–liquid reactive crystallization of lithium carbonate by a falling film column. Ind Eng Chem Res 52:17598–17606. https://doi.org/10.1021/ie402698v

    Article  CAS  Google Scholar 

  35. Saha B, Sharma MM (1996) Esterification of formic acid, acrylic acid and methacrylic acid with cyclohexene in batch and distillation column reactors: ion-exchange resins as catalysts. React Funct Polym 28:263–278. https://doi.org/10.1016/1381-5148(95)00092-5

    Article  CAS  Google Scholar 

  36. Kolah AK, Mahajani SM, Sharma MM (1996) Acetalization of formaldehyde with methanol in batch and continuous reactive distillation columns. Ind Eng Chem Res 35:3707–3720. https://doi.org/10.1021/ie950563x

    Article  CAS  Google Scholar 

  37. Gonzalez JC, Subawalla H, Fair JR (1997) Preparation of tert-amyl alcohol in a reactive distillation column. 2. Experimental demonstration and simulation of column characteristics. Ind Eng Chem Res 36:3845–3853. https://doi.org/10.1021/ie960808l

    Article  Google Scholar 

  38. Chopade SP (1999) Ion-exchange resin-catalyzed ketalization of acetone with 1,4-and 1,2-diols: use of molecular sieve in reactive distillation. React Funct Polym 42:201–212. https://doi.org/10.1016/S1381-5148(98)00072-8

    Article  CAS  Google Scholar 

  39. Saha B, Chopade SP, Mahajani SM (2000) Recovery of dilute acetic acid through esterification in a reactive distillation column. Catal Today 60:147–157. https://doi.org/10.1016/S0920-5861(00)00326-6

    Article  CAS  Google Scholar 

  40. Qi Z, Sundmacher K, Stein E, Kienle A, Kolah A (2002) Reactive separation of isobutene from C4 crack fractions by catalytic distillation processes. Sep Purif Technol 26:147–163. https://doi.org/10.1016/S1383-5866(01)00156-3

    Article  CAS  Google Scholar 

  41. Chiang S, Kuo C, Yu C, Wong D (2002) Design alternatives for the amyl acetate process: coupled reactor/column and reactive distillation. Ind Eng Chem Res 41:3233–3246. https://doi.org/10.1021/ie010358j

    Article  CAS  Google Scholar 

  42. Steinigeweg S, Gmehling J (2003) Esterification of a fatty acid by reactive distillation. Ind Eng Chem Res 42:3612–3619. https://doi.org/10.1021/ie020925i

    Article  CAS  Google Scholar 

  43. Schmitt M, Hasse H, Althaus K, Schoenmakers H, Gotze L, Moritz P (2004) Synthesis of n-hexyl acetate by reactive distillation. Chem Eng Process 43:397–409. https://doi.org/10.1016/S0255-2701(03)00124-7

    Article  CAS  Google Scholar 

  44. Steinigeweg S, Gmehling J (2004) Transesterification processes by combination of reactive distillation and pervaporation. Chem Eng Process 43:447–456. https://doi.org/10.1016/S0255-2701(03)00129-6

    Article  CAS  Google Scholar 

  45. Varisli D, Dogu T (2005) Simultaneous production of tert-amyl ethyl ether and tert-amyl alcohol from iso—amylene—ethanol—water mixtures in a batch-reactive distillation column. Ind Eng Chem Res 44:5227–5232. https://doi.org/10.1021/ie049241w

    Article  CAS  Google Scholar 

  46. Singh A, Tiwari A, Mahajani SM, Gudi RD (2006) Recovery of acetic acid from aqueous solutions by reactive distillation. Ind Eng Chem Res 45:2017–2025. https://doi.org/10.1021/ie0505514

    Article  CAS  Google Scholar 

  47. Thotla S, Agarwal V, Mahajani SM (2007) Aldol condensation of acetone with reactive distillation using water as a selectivity enhancer. Ind Eng Chem Res 46:8371–8379. https://doi.org/10.1021/ie061658

    Article  CAS  Google Scholar 

  48. Kumar R, Mahajani SM (2007) Esterification of lactic acid with n-butanol by reactive distillation. Ind Eng Chem Res 46:6873–6882. https://doi.org/10.1021/ie061274j

    Article  CAS  Google Scholar 

  49. Kotora M, Buchaly C, Kreis P, Gorak A, Markos J (2008) Reactive distillation—experimental data for propyl propionate synthesis. Chem Pap 62:65–69. https://doi.org/10.2478/s11696-007-0080

    Article  CAS  Google Scholar 

  50. Lee H-Y, Yen L-T, Chien I-L, Huang H-P (2009) Reactive distillation for esterification of an alcohol mixture containing n-butanol and n-amyl alcohol. Ind Eng Chem Res 48:7186–7204. https://doi.org/10.1021/ie801891q

    Article  CAS  Google Scholar 

  51. Altmana E, Kreis P, Gerven VT, Stefanidis GD, Stankiewicz A, Gorak A (2010) Pilot plant synthesis of n-propyl propionate via reactive distillation with decanter separator for reactant recovery. Experimental model validation and simulation studies. Chem Eng Process 49:965–972. https://doi.org/10.1016/j.cep.2010.04.008

    Article  CAS  Google Scholar 

  52. Orjuela A, Kolah A, Lira CT, Miller DJ (2011) Mixed succinic acid/acetic acid esterification with ethanol by reactive distillation. Ind Eng Chem Res 50:9209–9220. https://doi.org/10.1021/ie200133w

    Article  CAS  Google Scholar 

  53. Kiatkittipong W, Intaracharoen P, Laosiripojana N, Chaisuk C, Praserthdam P, Assabumrungrat S (2011) Glycerol ethers synthesis from glycerol etherification with tert-butyl alcohol in reactive distillation. Comput Chem Eng 35:2034–2043. https://doi.org/10.1016/j.compchemeng.2011.01.016

    Article  CAS  Google Scholar 

  54. Niesbach A, Fuhrmeister R, Keller T, Lutze P, Gorak A (2012) Esterification of acrylic acid and n-butanol in a pilot-scale reactive distillation column—experimental investigation, model validation, and process analysis. Ind Eng Chem Res 51:16444–16456. https://doi.org/10.1021/ie301934w

    Article  CAS  Google Scholar 

  55. Sandesh K, Babu J, Math S, Saidutta MB (2013) Reactive distillation using an ion-exchange catalyst: experimental and simulation studies for the production of methyl acetate. Ind Eng Chem Res 52:6984–6990. https://doi.org/10.1021/ie3029174

    Article  CAS  Google Scholar 

  56. Ye J, Li J, Sha Y, Xu Y, Zhou D (2014) Novel reactive distillation process for phenol production with a dry cation exchange resin as the catalyst. Ind Eng Chem Res 53:12614–12621. https://doi.org/10.1021/ie500165m

    Article  CAS  Google Scholar 

  57. Zuo C, Pan L, Cao S, Li C, Zhang S (2014) Catalysts, kinetics, and reactive distillation for methyl acetate synthesis. Ind Eng Chem Res 53:10540–10548. https://doi.org/10.1021/ie5

    Article  CAS  Google Scholar 

  58. Zuo C, Ge T, Li C, Cao S, Zhang S (2016) Kinetic and reactive distillation for acrylic acid synthesis via transesterification. Ind Eng Chem Res 55:8281–8291. https://doi.org/10.1021/acs.iecr.6b01128

    Article  CAS  Google Scholar 

  59. Hussain A, Minh LQ, Muhammad AQ, Lee M (2017) Design of an intensified reactive distillation configuration for 2-methoxy-2-methylheptane. Ind Eng Chem Res 57:316–328. https://doi.org/10.1021/acs.iecr.7b04624

    Article  CAS  Google Scholar 

  60. Rastegari H, Ghaziaskar HS, Yalpani M, Shafiei A (2017) Development of a continuous system based on azeotropic reactive distillation to enhance triacetine selectivity in glycerol esterification with acetic acid. Energy Fuels 31:8256–8262. https://doi.org/10.1021/acs.energyfuels.7b01068

    Article  CAS  Google Scholar 

  61. Kawase M, Inoue Y, Araki T, Hashimoto K (1999) The simulated moving-bed reactor for production of bis-phenol A. Catal Today 48:199–209. https://doi.org/10.1016/S0920-5861(98)00374-5

    Article  CAS  Google Scholar 

  62. Lode F, Houmard M, Migliorini C, Mazzotti M, Morbidelli M (2001) Continuous reactive chromatography. Chem Eng Sci 56:269–291. https://doi.org/10.1016/S0009-2509(00)00229-3

    Article  CAS  Google Scholar 

  63. Zhang Z, Hidajat K, Ray AK (2001) Application of simulated counter-current moving-bed chromatographic reactor for MTBE synthesis. Ind Eng Chem Res 40:5305–5316. https://doi.org/10.1021/ie001071

    Article  CAS  Google Scholar 

  64. Meissner JP, Carta G (2002) Continuous regioselective enzymatic esterification in a simulated moving bed reactor. Ind Eng Chem Res 41:4722–4732. https://doi.org/10.1021/ie0202625

    Article  CAS  Google Scholar 

  65. Gelosa D, Ramaioli M, Valente G (2003) Chromatographic reactors: esterification of glycerol with acetic acid using acidic polymeric resins. Ind Eng Chem Res 42:6536–6544. https://doi.org/10.1021/ie030292n

    Article  CAS  Google Scholar 

  66. Yu W, Hidajat K, Ray AK (2003) Modelling simulation, and experimental study of a simulated moving bed reactor for the synthesis of methyl acetate ester. Ind Eng Chem Res 42:6743–6754. https://doi.org/10.1021/ie0302241

    Article  CAS  Google Scholar 

  67. Vu D, Seidel-Morgenstern A, Gruner S, Kienle A (2005) Analysis of ester hydrolysis reactions in a chromatographic reactor using equilibrium theory and a rate model. Ind Eng Chem Res 44:9565–9574. https://doi.org/10.1021/ie050256j

    Article  CAS  Google Scholar 

  68. Gandi GK, Silva V, Rodrigues AE (2006) Synthesis of 1,1-di-methoxy-ethane in a fixed bed adsorptive reactor. Ind Eng Chem Res 45:2032–2039. https://doi.org/10.1021/ie051096e

    Article  CAS  Google Scholar 

  69. Gyani VC, Mahajani SM (2008) Reactive chromatography for the synthesis of 2-ethylhexyl acetate. Sep Sci Technol 43:2245–2268. https://doi.org/10.1080/01496390802118871

    Article  CAS  Google Scholar 

  70. Pereira C, Gomes P, Gandi GK, Silva V, Rodrigues AE (2008) Multifunctional reactor for the synthesis of dimethyl-acetal. Ind Eng Chem Res 47:3515–3524. https://doi.org/10.1021/ie070889t

    Article  CAS  Google Scholar 

  71. Pereira C, Zabka M, Silva V, Rodrigues AE (2009) A novel process for the ethyl lactate synthesis in a simulated moving bed reactor (SMBR). Chem Eng Sci 64:3301–3310. https://doi.org/10.1016/j.ces.2009.04.003

    Article  CAS  Google Scholar 

  72. Deshmukh KS, Gyani VC, Mahajani SM (2009) Esterification of butyl cellosolve with acetic acid using ion exchange resin in fixed bed chromatographic reactors. Int J Chem Reactor Eng 2:1542–6580. https://doi.org/10.2202/1542-6580.1793

    Article  Google Scholar 

  73. Kapil A, Bhat SA, Sadhukhan J (2010) Dynamic simulation of sorption enhanced reaction processes for biodiesel production. Ind Eng Chem Res 49:2326–2335. https://doi.org/10.1021/ie901225u

    Article  CAS  Google Scholar 

  74. Patel D, Saha B (2012) Esterification of acetic acid with n-hexanol in batch and continuous chromatographic reactors using a gelular ion-exchange resin as a catalyst. Ind Eng Chem Res 51:11965–11974. https://doi.org/10.1021/ie3007424

    Article  CAS  Google Scholar 

  75. Gyani VC, Reddy B, Rahul B, Mahajani SM (2014) Simulated moving bed reactor for the synthesis of 2-ethylhexyl acetate—Part I: Experiments and simulations. Ind Eng Chem Res 53:15811–15823. https://doi.org/10.1021/ie502090z

    Article  CAS  Google Scholar 

  76. Reddy B, Mahajani S (2014) Feasibility of Reactive chromatography for the synthesis of n-propyl acetate. Ind Eng Chem Res 53:1395–1403. https://doi.org/10.1021/ie403533t

    Article  CAS  Google Scholar 

  77. Agrawal G, Oh J, Sreedhar B, Tie S, Donaldson ME, Frank TC, Schultz AK, Bommarius AS, Kawajiri Y (2014) Optimization of reactive simulated moving bed systems with modulation of feed concentration for production of glycol ether ester. J Chromatogr A 1360:196–208. https://doi.org/10.1016/j.chroma.2014.07.0800021-9673

    Article  CAS  PubMed  Google Scholar 

  78. Constantino D, Pereira C, Faria R, Loureiro JM, Rodrigues AE (2015) Simulated moving bed reactor for butyl acrylate synthesis: from pilot to industrial scale. Chem Eng Process 55:10735–10743. https://doi.org/10.1016/j.cep.2015.08.003

    Article  CAS  Google Scholar 

  79. Oh J, Agrawal G, Sreedhar B, Donaldson ME, Schultz AK, Frank TC, Bommarius AS, Kawajiri Y (2016) Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst. J Chromatogr A 1466:84–95. https://doi.org/10.1016/j.chroma.2016.08.0720021-9673

    Article  CAS  PubMed  Google Scholar 

  80. Tie S, Sreedhar B, Agrawal G, Oh J, Donaldson M, Frank T, Bommarius A, Kawajiri Y (2016) Model-based design and experimental validation of simulated moving bed reactor for production of glycol ether ester. Chem Eng J 301:188–199. https://doi.org/10.1016/j.cej.2016.04.062

    Article  CAS  Google Scholar 

  81. Malinowski J (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Prog 16:76–79. https://doi.org/10.1021/bp990140g

    Article  CAS  PubMed  Google Scholar 

  82. Lee S, Ahn B, Kim J (2002) Reaction equilibrium of penicillin G with Amberlite LA-2 in a nonpolar organic solvent. Biotechnol Prog 18:108–115. https://doi.org/10.1021/bp010145p

    Article  CAS  PubMed  Google Scholar 

  83. Lee S (2004) Kinetics of reactive extraction of penicillin G by Amberlite LA-2 in kerosene. Am Ins Chem Eng J 50:119–126. https://doi.org/10.1002/aic.10011

    Article  CAS  Google Scholar 

  84. Cascaval D, Blaga A, Camaruţ M, Galaction A (2007) Comparative study on reactive extraction of nicotinic acid with Amberlite LA-2 and D2EHPA. Sep Sci Technol 42:389–401. https://doi.org/10.1080/01496390601069937

    Article  CAS  Google Scholar 

  85. Uslu HS, Kırbaslar I, Wasewar K (2009) Reactive extraction of levulinic acid by Amberlite LA-2 extractant. J Chem Eng Data 54:712–718. https://doi.org/10.1021/je800261j

    Article  CAS  Google Scholar 

  86. Blaga A, Galaction A, Cascaval D (2010) Reactive extraction of 2-keto-gluconic acid Mechanism and influencing factors. Rom Biotechnol Lett 15:5253–5259

    CAS  Google Scholar 

  87. Blaga A, Malutan T (2012) Selective separation of vitamin C by reactive extraction. J Chem Eng Data 57:431–435. https://doi.org/10.1021/je2010193

    Article  CAS  Google Scholar 

  88. Li Y, Zhu J, Wu Y, Liu J (2013) Reactive extraction of 2,3-butanediol from fermentation broth. Korean J Chem Eng 30:154–159. https://doi.org/10.1007/s11814-012-0114-0

    Article  CAS  Google Scholar 

  89. Kloetzer L, Postaru M, Galaction A, Blaga A, Cascaval D (2013) Comparative study on rosmarinic acid separation by reactive extraction with Amberlite LA-2 and D2EHPA 1. Interfacial reaction mechanism and influencing factors. Ind Eng Chem Res 52:13785–13794. https://doi.org/10.1021/ie4023513

    Article  CAS  Google Scholar 

  90. Uslu H, Datta D, Kumar S (2014) Reactive extraction of oxoethanoic acid (glyoxylic acid) using Amberlite LA-2 in different diluents. J Chem Eng Data 59:2623–2629. https://doi.org/10.1021/je5003972

    Article  CAS  Google Scholar 

  91. Uslu H, Datta D, Kumar S (2015) Investigations on the reactive extraction of glyoxylic acid by Amberlite LA-2 dissolved in alcoholic diluents. Sep Sci Technol 50:2658–2667. https://doi.org/10.1080/01496395.2015.1067229

    Article  CAS  Google Scholar 

  92. Uslu H, Datta D, Bamufleh H (2016) Extraction of picric acid from wastewater by a secondary amine (Amberlite LA2) in 1-octanol: equilibrium, kinetics, thermodynamics and molecular dynamic simulation. Ind Eng Chem Res 55:3659–3667. https://doi.org/10.1021/acs.iecr.5b04750

    Article  CAS  Google Scholar 

  93. Uslu H, Marti M (2017) Equilibrium data on the reactive extraction of picric acid from dilute aqueous solutions using Amberlite LA-2 in ketones. J Chem Eng Data 62:2132–2135. https://doi.org/10.1021/acs.jced.7b00226

    Article  CAS  Google Scholar 

  94. Habova V, Melzoch K, Rychtera M, Pribyl L, Mejta V (2018) Application of electro—dialysis for lactic acid recovery. Czech J Food Sci 19:73–80. https://doi.org/10.17221/6579-CJFS

    Article  Google Scholar 

  95. Cifuentes G, Guajardo N, Hernandez J (2015) Recovery of hydrochloric acid from ion exchange processes by reactive electro—dialysis. J Chil Chem Soc 60:2711–2715. https://doi.org/10.4067/S0717-97072015000400015

    Article  Google Scholar 

  96. Chai P, Wang J, Lu H (2015) The cleaner production of monosodium l-glutamate by resin-filled electro-membrane reactor. J Membr Sci 493:549–556. https://doi.org/10.1016/j.memsci.2015.07.023

    Article  CAS  Google Scholar 

  97. Zhang K, Wang M, Gao C (2011) Tartaric acid production by ion exchange resin-filling electrometathesis and its process economics. J Membr Sci 366:266–271. https://doi.org/10.1016/j.memsci.2010.10.013

    Article  CAS  Google Scholar 

  98. Porada S, Egmond W, Post J, Saakes M, Hamelers H (2018) Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis. J Membr Sci 552:22–30. https://doi.org/10.1016/j.memsci.2018.01.050

    Article  CAS  Google Scholar 

  99. Li J, Yuan S, Wang J, Zhu J, Shen J, Bruggen B (2018) Mussel-inspired modification of ion exchange membrane for monovalent separation. J Membr Sci 553:139–150. https://doi.org/10.1016/j.memsci.2018.02.046

    Article  CAS  Google Scholar 

  100. Duan X, Wang C, Wang T, Xie X, Zhou X, Ye Y (2018) A polysulfone-based anion exchange membrane for phosphoric acid concentration and purification by electro-electro—dialysis. J Membr Sci 552:86–94. https://doi.org/10.1016/j.memsci.2018.02.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh S. Mahajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shetty, A.V., Mahajan, Y.S. (2019). Chromatographic Reactive Separations. In: Inamuddin, Rangreez, T., M. Asiri, A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06085-5_7

Download citation

Publish with us

Policies and ethics