Skip to main content

Brain Ultrasound in the Non-neurocritical Care Setting

  • Chapter
  • First Online:
Book cover Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1720 Accesses

Abstract

The clinical applications of ultrasound in intensive care and perioperative medicine have expanded enormously over the past decades. In particular, brain ultrasonography and transcranial Doppler (TCD) can help with early detection of neurological emergencies and provide real-time information on the cerebral hemodynamics of critically ill patients. Ultrasound enables assessment of brain structures and detection of anatomy, as well as calculation of basic and TCD-derived parameters. Among these, non-invasive assessment of intracranial pressure (ICP), cerebral perfusion pressure (CPP) and autoregulation mechanisms have gained particular interest and can have useful clinical applications also outside the specialized neurocritical care unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res. 2018;96:720–30.

    Article  CAS  Google Scholar 

  2. De Riva N, Budohoski KP, Smielewski P, et al. Transcranial doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.

    Article  Google Scholar 

  3. Robba C, Donnelly J, Bertuetti R, et al. Doppler non-invasive monitoring of ICP in an animal model of acute intracranial hypertension. Neurocrit Care. 2015;23:419–26.

    Article  Google Scholar 

  4. Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC. Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry. 2001;70:198–204.

    Article  CAS  Google Scholar 

  5. Rasulo FA, Bertuetti R, Robba C, et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care. 2017;21:44.

    Article  Google Scholar 

  6. Robba C, Santori G, Czosnyka M, et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2018;44:1284–94.

    Article  Google Scholar 

  7. Robba C, Cardim D, Tajsic T, et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med. 2017;14:e1002356.

    Article  Google Scholar 

  8. Geeraerts T, Launey Y, Martin L, Pottecher J, Duranteau J, Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33:1704–11.

    Article  Google Scholar 

  9. Thumburu KK, Taneja S, Vasishta RK, Dhiman RK. Neuropathology of acute liver failure. Neurochem Int. 2012;60:672–5.

    Article  CAS  Google Scholar 

  10. Vaquero J, Fontana RJ, Larson AM, et al. Complications and use of intracranial pressure monitoring in patients with acute liver failure and severe encephalopathy. Liver Transpl. 2005;11:1581–9.

    Article  Google Scholar 

  11. Rajajee V, Williamson CA, Fontana RJ, Courey AJ, Patil PG. Noninvasive intracranial pressure assessment in acute liver failure. Neurocrit Care. 2018;8:1–11.

    Google Scholar 

  12. Seo H, Kim YK, Shin WJ, Hwang GS. Ultrasonographic optic nerve sheath diameter is correlated with arterial carbon dioxide concentration during reperfusion in liver transplant recipients. Transplant Proc. 2013;45:2272–6.

    Article  CAS  Google Scholar 

  13. Zheng Y, Villamayor AJ, Merritt W, et al. Continuous cerebral blood flow autoregulation monitoring in patients undergoing liver transplantation. Neurocrit Care. 2012;17:77–84.

    Article  Google Scholar 

  14. Stewart J, Särkelä M, Koivusalo AM, et al. Frontal electroencephalogram variables are associated with the outcome and stage of hepatic encephalopathy in acute liver failure. Liver Transpl. 2014;20:1256–65.

    Article  Google Scholar 

  15. Abdo A, Pérez-Bernal J, Hinojosa R, et al. Cerebral hemodynamics patterns by transcranial Doppler in patients with acute liver failure. Transplant Proc. 2015;47:2647–9.

    Article  CAS  Google Scholar 

  16. Oddo M, Taccone FS. How to monitor the brain in septic patients? Minerva Anestesiol. 2015;81:776–88.

    CAS  PubMed  Google Scholar 

  17. Pierrakos C, Antoine A, Velissaris D, et al. Transcranial doppler assessment of cerebral perfusion in critically ill septic patients: a pilot study. Ann Intensive Care. 2013;3:28.

    Article  Google Scholar 

  18. Pfister D, Siegemund M, Dell-Kuster S, et al. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12:R63.

    Article  Google Scholar 

  19. Ueda T, Ishida E, Kojima Y, Yoshikawa S, Yonemoto H. Sonographic optic nerve sheath diameter: a simple and rapid tool to assess the neurologic prognosis after cardiac arrest. J Neuroimaging. 2015;25:927–30.

    Article  Google Scholar 

  20. Ertl M, Weber S, Hammel G, Schroeder C, Krogias C. Transorbital sonography for early prognostication of hypoxic-ischemic encephalopathy after cardiac arrest. J Neuroimaging. 2018;28:542–8.

    Article  Google Scholar 

  21. Chelly J, Deye N, Guichard JP, et al. The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study. Resuscitation. 2016;103:7–13.

    Article  Google Scholar 

  22. Grubb BP, Durzinsky D, Brewster P, Gbur C, Collins B. Sudden cerebral vasoconstriction during induced polymorphic ventricular tachycardia and fibrillation: further observations of a paradoxic response. Pacing Clin Electrophysiol. 1997;20:667–72.

    Google Scholar 

  23. Heimburger D, Durand M, Gaide-Chevronnay L, et al. Quantitative pupillometry and transcranial Doppler measurements in patients treated with hypothermia after cardiac arrest. Resuscitation. 2016;103:88–93.

    Article  Google Scholar 

  24. Marinoni M, Migliaccio ML, Trapani S, et al. Cerebral microemboli detected by transcranial doppler in patients treated with extracorporeal membrane oxygenation. Acta Anaesthesiol Scand. 2016;60:934–44.

    Article  CAS  Google Scholar 

  25. Kavi T, Esch M, Rinsky B, Rosengart A, Lahiri S, Lyden PD. Transcranial Doppler changes in patients treated with extracorporeal membrane oxygenation. J Stroke Cerebrovasc Dis. 2016;25:2882–5.

    Article  Google Scholar 

  26. Taylor GA, Fitz CR, Miller MK, Garin DB, Catena LM, Short BL. Intracranial abnormalities in infants treated with extracorporeal membrane oxygenation: imaging with US and CT. Radiology. 1987;165:675–8.

    Article  CAS  Google Scholar 

  27. Ball L, Sutherasan Y, Pelosi P. Monitoring respiration: what the clinician needs to know. Best Pract Res Clin Anaesthesiol. 2013;27:209–23.

    Article  Google Scholar 

  28. Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205.

    Article  Google Scholar 

  29. Shapiro HM, Marshall LF. Intracranial pressure responses to PEEP in head-injured patients. J Trauma. 1978;18:254–6.

    Article  CAS  Google Scholar 

  30. Robba C, Bragazzi L, Bertuccio A, et al. Effects of prone position and positive end-expiratory pressure on noninvasive estimators of ICP: a pilot study. J Neurosurg Anesthesiol. 2017;29:243–50.

    Article  Google Scholar 

  31. Lindqvist PG, Maršál K, Pirhonen JP. Maternal cerebral Doppler velocimetry before, during, and after a normal pregnancy: a longitudinal study. Acta Obstet Gynecol Scand. 2006;85:1299–303.

    Article  Google Scholar 

  32. Janzarik WG, Ehlers E, Ehmann R, et al. Dynamic cerebral autoregulation in pregnancy and the risk of preeclampsia. Hypertension. 2014;63:161–6.

    Article  CAS  Google Scholar 

  33. Dubost C, Le Gouez A, Jouffroy V, et al. Optic nerve sheath diameter used as ultrasonographic assessment of the incidence of raised intracranial pressure in preeclampsia: a pilot study. Anesthesiology. 2012;116:1066–71.

    Article  Google Scholar 

  34. Van Veen TR, Panerai RB, Haeri S, Griffioen AC, Zeeman GG, Belfort MA. Cerebral autoregulation in normal pregnancy and preeclampsia. Obstet Gynecol. 2013;122:1064–9.

    Article  Google Scholar 

  35. Kargiotis O, Safouris A, Magoufis G, Stamboulis E, Tsivgoulis G. Transcranial color-coded duplex in acute encephalitis: current status and future prospects. J Neuroimaging. 2016;26:377–82.

    Article  Google Scholar 

  36. Sheehan JR, Liu X, Donnelly J, Cardim D, Czosnyka M, Robba C. Clinical application of non-invasive intracranial pressure measurements. Br J Anaesth. 2018;121:500–1.

    Article  CAS  Google Scholar 

  37. Mäurer M, Shambal S, Berg D, et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke. 1998;29:2563–7.

    Article  Google Scholar 

  38. Albert AF, Kirkman MA. Clinical and radiological predictors of malignant middle cerebral artery infarction development and outcomes. J Stroke Cerebrovasc Dis. 2017;26:2671–9.

    Article  Google Scholar 

  39. Školoudík D, Herzig R, Fadrná T, et al. Distal enlargement of the optic nerve sheath in the hyperacute stage of intracerebral haemorrhage. Br J Ophthalmol. 2011;5:217–21.

    Article  Google Scholar 

  40. Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49:508–14.

    Article  Google Scholar 

  41. Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10:376–81.

    Article  Google Scholar 

  42. Yüzbaşioğlu Y, Yüzbaşioğlu S, Coşkun S, et al. Bedside measurement of the optic nerve sheath diameter with ultrasound in cerebrovascular disorders. Turk J Med Sci. 2018;48:93–9.

    Article  Google Scholar 

  43. Amini A, Kariman H, Arhami Dolatabadi A, et al. Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med. 2013;31:236–9.

    Article  Google Scholar 

  44. Major R, Girling S, Boyle A. Ultrasound measurement of optic nerve sheath diameter in patients with a clinical suspicion of raised intracranial pressure. Emerg Med J. 2011;28:679–81.

    Article  Google Scholar 

  45. Bouzat P, Almeras L, Manhes P, et al. Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology. 2016;125:346–54.

    Article  Google Scholar 

  46. Komut E, Kozacı N, Sönmez BM, et al. Bedside sonographic measurement of optic nerve sheath diameter as a predictor of intracranial pressure in ED. Am J Emerg Med. 2016;34:963–7.

    Article  Google Scholar 

  47. Smith B, Vu E, Kibler K, et al. Does hypothermia impair cerebrovascular autoregulation in neonates during cardiopulmonary bypass? Paediatr Anaesth. 2017;27:905–10.

    Article  Google Scholar 

  48. Robba C, Cardim D, Donnelly J, et al. Effects of pneumoperitoneum and Trendelenburg position on intracranial pressure assessed using different non-invasive methods. Br J Anaesth. 2016;117:783–91.

    Article  CAS  Google Scholar 

  49. Buhre W, Weyland A, Buhre K, et al. Effects of the sitting position on the distribution of blood volume in patients undergoing neurosurgical procedures. Br J Anaesth. 2000;84:354–7.

    Article  CAS  Google Scholar 

  50. Pohl A, Cullen DJ. Cerebral ischemia during shoulder surgery in the upright position: a case series. J Clin Anesth. 2005;17:463–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pelosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robba, C., Ball, L., Pelosi, P. (2019). Brain Ultrasound in the Non-neurocritical Care Setting. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics