Skip to main content

Mechanical Circulatory Support Devices for Cardiogenic Shock: State of the Art

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1987 Accesses

Abstract

Cardiogenic shock is the clinical expression of circulatory failure, as a consequence of left, right or biventricular dysfunction. Cardiogenic shock is also defined as a state of critical end-organ hypoperfusion due to primary cardiac dysfunction [1–3]. Cardiogenic shock is not simply a decrease in cardiac contractile function, but also a multiorgan dysfunction syndrome involving the entire circulatory system, often complicated by a systemic inflammatory response syndrome with severe cellular and metabolic abnormalities [4]. The clinical presentation of cardiogenic shock varies from hemodynamic abnormalities of pre-shock to mild shock, progressing to more profound shock and finally refractory shock, which invariably is associated with high mortality rates. Additional insults can occur, such as arrhythmias, vasodilation, ischemia and infection, acutely changing the trajectory of the disease [5]. The contemporary management of cardiogenic shock involves early diagnosis and directed therapy to optimize oxygen delivery and tissue perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mebazaa A, Combes A, Van Diepen S, et al. Management of cardiogenic shock complicating myocardial infarction. Intensive Care Med. 2018;44:760–73.

    Article  Google Scholar 

  2. Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39:119–77.

    Article  Google Scholar 

  3. van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2017;136:e232–68.

    Article  Google Scholar 

  4. Mandawat A, Rao SV. Percutaneous mechanical circulatory support devices in cardiogenic shock. Circ Cardiovasc Interv. 2017;10:e004337.

    Article  Google Scholar 

  5. Bellumkonda L, Gul B, Masri SC. Evolving concepts in diagnosis and management of cardiogenic shock. Am J Cardiol. 2018;122:1104–10.

    Article  Google Scholar 

  6. Hochman JS, Buller CE, Sleeper LA, et al. Cardiogenic shock complicating acute myocardial infarction—etiologies, management and outcome: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J Am Coll Cardiol. 2000;36(3 Suppl A):1063–70.

    Article  CAS  Google Scholar 

  7. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686–97.

    Article  Google Scholar 

  8. Harjola VP, Lassus J, Sionis A, et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail. 2015;17:501–9.

    Article  Google Scholar 

  9. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19:S8.

    Article  Google Scholar 

  10. Edul VS, Enrico C, Laviolle B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012;40:1443–8.

    Article  Google Scholar 

  11. Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7.

    Article  Google Scholar 

  12. Jozwiak M, Monnet X, Teboul JL. Less or more hemodynamic monitoring in critically ill patients. Curr Opin Crit Care. 2018;24:309–15.

    Article  Google Scholar 

  13. Price S, Platz E, Cullen L, et al. Expert consensus document: echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat Rev Cardiol. 2017;14:427–40.

    Article  Google Scholar 

  14. De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.

    Article  Google Scholar 

  15. Hamzaoui O, Jozwiak M, Geffriaud T, et al. Norepinephrine exerts an inotropic effect during the early phase of human septic shock. Br J Anesth. 2018;120:517–24.

    Article  CAS  Google Scholar 

  16. McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA. 2018;319:1889–900.

    Article  CAS  Google Scholar 

  17. Levy B, Perez P, Perny J, et al. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39:450–455 48.

    Article  CAS  Google Scholar 

  18. Tarvasmaki T, Lassus J, Varpula M, et al. Current real-life use of vasopressors and inotropes in cardiogenic shock—adrenaline use is associated with excess organ injury and mortality. Crit Care. 2016;20:208.

    Article  Google Scholar 

  19. Levy BC, Clere-Jehl R, Legras A, et al. Epinephrine versus norepinephrine in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2018;72:173–82.

    Article  CAS  Google Scholar 

  20. Léopold V, Gayat E, Pirracchio R, et al. Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients. Intensive Care Med. 2018;44:847–56.

    Article  Google Scholar 

  21. Toscani L, Aya HD, Antonakaki D, et al. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care. 2017;21:207.

    Article  Google Scholar 

  22. Nakamura RE, Vincent JL, Fukushima JT, et al. A liberal strategy of red blood cell transfusion reduces cardiogenic shock in elderly patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2015;150:1314–20.

    Article  Google Scholar 

  23. Hajjar LA, Fukushima JT, Almeida JP, et al. Strategies to reduce blood transfusion: a Latin-American perspective. Curr Opin Anaesthesiol. 2015;28:81–8.

    Article  CAS  Google Scholar 

  24. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring.Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.

    Article  Google Scholar 

  25. Marik PE. Obituary: pulmonary artery catheter 1970 to 2013. Ann Intensive Care. 2013;3:38.

    Article  Google Scholar 

  26. De Backer D, Hajjar LA, Pinsky MR. Is there still a place for the Swan–Ganz catheter? We are not sure. Intensive Care Med. 2018;44:960–2.

    Article  Google Scholar 

  27. De Backer D, Bakker J, Cecconi M, et al. Alternatives to the Swan-Ganz catheter. Intensive Care Med. 2018;44:730–41.

    Article  Google Scholar 

  28. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341:625–34.

    Article  CAS  Google Scholar 

  29. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA. 2006;295:2511–5.

    Article  Google Scholar 

  30. Thiele H, Akin I, Sandri M, et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377:2419–32.

    Article  Google Scholar 

  31. de Waha S, Jobs A, Pöss J, et al. Multivessel versus culprit lesion only percutaneous coronary intervention in cardiogenic shock complicating acute myocardial infarction: a systematic review and meta-analysis. Eur Heart J. 2018;7:28–37.

    Google Scholar 

  32. Thiele H, Akin I, Sandri M, et al. One-year outcomes after PCI strategies in cardiogenic shock. N Engl J Med. 2018;379:1699–710.

    Article  Google Scholar 

  33. Kapelios CJ, Terrovitis JV, Nanas JN. Current and future applications of the intra-aortic balloon pump. Curr Opin Cardiol. 2014;29:258–65.

    Article  Google Scholar 

  34. Thiele H, Zeymer U, Neumann FJ. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367:1287–96.

    Article  CAS  Google Scholar 

  35. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2017;9:119–77.

    Google Scholar 

  36. Romeo F, Acconcia MC, Sergi D, et al. The outcome of intra-aortic balloon pump support in acute myocardial infarction complicated by cardiogenic shock according to the type of revascularization: a comprehensive meta-analysis. Am Heart J. 2013;165:679–92.

    Article  Google Scholar 

  37. Aso S, Matsui H, Fushimi K, et al. The effect of intraaortic balloon pumping under venoarterial extracorporeal membrane oxygenation on mortality of cardiogenic patients: an analysis using a nationwide inpatient database. Crit Care Med. 2016;44:1974–9.

    Article  CAS  Google Scholar 

  38. Mandawat A, Rao SV. Percutaneous mechanical circulatory support devices in cardiogenic shock. Circ Cardiovasc Interv. 2017;10:e004337.

    Google Scholar 

  39. Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276–83.

    Article  Google Scholar 

  40. Kar B, Gregoric ID, Basra SS, et al. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57:688–96.

    Article  Google Scholar 

  41. Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52:1584–8.

    Article  Google Scholar 

  42. Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2017;69:278–87.

    Article  Google Scholar 

  43. Thiele H, Jobs A, Ouweneel DM, et al. Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J. 2017;38:3523–31.

    Article  Google Scholar 

  44. Anderson MB, Goldstein J, Milano C, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34:1549–60.

    Article  Google Scholar 

  45. Hsu PL, Parker J, Egger C. Mechanical circulatory support for right heart failure: current technology and future outlook. Artif Organs. 2012;36:332–47.

    Article  Google Scholar 

  46. Kleeber ME, Haddad EV, Choi CW, et al. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock. JACC Heart Fail. 2018;6:503–16.

    Google Scholar 

  47. Maxhera B, Albert A, Ansari E, et al. Survival predictors in ventricular assist device patients with prior extracorporeal life support: selecting appropriate candidates. Artif Organs. 2014;38:727–32.

    Article  Google Scholar 

  48. Ouweneel DM, Schotborogh JV, Limpens J, et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and metaanalysis. Intensive Care Med. 2016;42:1922–34.

    Article  Google Scholar 

  49. Marasco SF, Lukas G, McDonald M, et al. Review of ECMO (extra corporeal membrane oxygenation) support in critically ill adult patients. Heart Lung Circ. 2008;17(Suppl 4):S41–7.

    Article  Google Scholar 

  50. Extracorporeal Life Support Organization (ELSO). Guidelines for adult cardiac failure. https://www.elso.org/Portals/0/IGD/Archive/FileManager/e76ef78eabcusersshyerdocumentselsoguidelinesforadultcardiacfailure1.3.pdf. Accessed 31 Oct 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Hajjar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajjar, L.A., Teboul, JL. (2019). Mechanical Circulatory Support Devices for Cardiogenic Shock: State of the Art. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics