Skip to main content

Using Semantic Programming for Developing a Web Content Management System for Semantic Phenotype Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11371))

Abstract

We present a prototype of a semantic version of Morph·D·Base that is currently in development. It is based on SOCCOMAS, a semantic web content management system that is controlled by a set of source code ontologies together with a Java-based middleware and our Semantic Programming Ontology (SPrO). The middleware interprets the descriptions contained in the source code ontologies and dynamically decodes and executes them to produce the prototype. The Morph·D·Base prototype in turn allows the generation of instance-based semantic morphological descriptions through completing input forms. User input to these forms generates data in form of semantic graphs. We show with examples how the prototype has been described in the source code ontologies using SPrO and demonstrate live how the middleware interprets these descriptions and dynamically produces the application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A semantic graph is a network of RDF/OWL-based triple statements, in which a given Uniform Resource Identifier (URI) takes the Object position in one triple and the Subject position in another triple. This way, several triples can be connected to form a semantic graph. Because information about individuals can be represented as a semantic graph as well, we distinguish class- and instance-based semantic graphs.

  2. 2.

    A named graph identifies a set of triple statements by adding the URI of the named graph to each triple belonging to this named graph, thus turning the triple into a quad. The Jena tuple store can handle such quadruples. The use of named graphs enables partitioning data in an RDF store.

References

  1. Smith, B.: Ontology. In: Floridi, L. (ed.) Blackwell Guide to the Philosophy of Computing and Information, pp. 155–166. Blackwell Publishing, Oxford (2003)

    Google Scholar 

  2. Schulz, S., Stenzhorn, H., Boeker, M., Smith, B.: Strengths and limitations of formal ontologies in the biomedical domain. RECIIS 3, 31–45 (2009)

    Google Scholar 

  3. Schulz, S., Jansen, L.: Formal ontologies in biomedical knowledge representation. IMIA Yearb. Med. Inform. 2013(8), 132–146 (2013)

    Google Scholar 

  4. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11, 39–136 (1996)

    Article  Google Scholar 

  5. Sansone, S.-A., Rocca-Serra, P., Tong, W., Fostel, J., Morrison, N., et al.: A strategy capitalizing on synergies: the reporting structure for biological investigation (RSBI) working group. OMICS: J Integr. Biol. 10, 164–171 (2006)

    Article  Google Scholar 

  6. Vogt, L.: The future role of bio-ontologies for developing a general data standard in biology: chance and challenge for zoo-morphology. Zoomorphology 128, 201–217 (2009)

    Article  Google Scholar 

  7. Vogt, L., Nickel, M., Jenner, R.A., Deans, A.R.: The need for data standards in zoomorphology. J. Morphol. 274, 793–808 (2013)

    Article  Google Scholar 

  8. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., et al.: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016)

    Article  Google Scholar 

  9. Brazma, A.: On the importance of standardisation in life sciences. Bioinformatics 17, 113–114 (2001)

    Article  Google Scholar 

  10. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., et al.: Minimum information about a microarray experiment (MIAME)–toward standards for microarray data. Nat. Genet. 29, 365–371 (2001)

    Article  Google Scholar 

  11. Wang, X., Gorlitsky, R., Almeida, J.S.: From XML to RDF: how semantic web technologies will change the design of “omic” standards. Nat. Biotechnol. 23, 1099–1103 (2005)

    Article  Google Scholar 

  12. Vogt, L.: eScience and the need for data standards in the life sciences: in pursuit of objectivity rather than truth. Syst. Biodivers. 11, 257–270 (2013)

    Article  Google Scholar 

  13. SPARQL Query Language for RDF. W3C Recommendation, 15 January 2008

    Google Scholar 

  14. GitHub: code for semantic programming ontology (SPrO). https://github.com/SemanticProgramming/SPrO

  15. Wenzel, K.: KOMMA: An application framework for ontology-based software systems. Semant. Web J. swj89_0, 1–10 (2010)

    Google Scholar 

  16. Buranarach, M., Supnithi, T., Thein, Y.M., Ruangrajitpakorn, T., Rattanasawad, T., et al.: OAM: an ontology application management framework for simplifying ontology-based semantic web application development. Int. J. Softw. Eng. Knowl. Eng. 26, 115–145 (2016)

    Article  Google Scholar 

  17. GitHub: code for semantic ontology-controlled web content management system (SOCCOMAS). https://github.com/SemanticProgramming/SOCCOMAS

  18. Berners-Lee, T.: Linked data. (2009). https://www.w3.org/DesignIssues/LinkedData.html

  19. Semantic Morph•D•Base Prototype. https://proto.morphdbase.de

  20. GitHub: Code for semantic Morph·D·Base prototype. https://github.com/MorphDBase/MDB-prototype

  21. Deans, A.R., Lewis, S.E., Huala, E., Anzaldo, S.S., Ashburner, M., et al.: Finding our way through phenotypes. PLoS Biol. 13, e1002033 (2015)

    Article  Google Scholar 

  22. Mikó, I., Deans, A.R.: Phenotypes in insect biodiversity research phenotype data : past and present. In: Foottit, R.G., Adler, P.H. (eds.) Insect Biodiversity: Science and Society, vol. II, pp. 789–800. Wiley, Hoboken (2018)

    Chapter  Google Scholar 

  23. Vogt, L., Bartolomaeus, T., Giribet, G.: The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics 26, 301–325 (2010)

    Article  Google Scholar 

  24. BioPortal. http://bioportal.bioontology.org/

  25. Phenotype And Trait Ontology (PATO). http://obofoundry.org/ontology/pato.html

  26. Vogt, L.: Assessing similarity: on homology, characters and the need for a semantic approach to non-evolutionary comparative homology. Cladistics 33, 513–539 (2017)

    Article  Google Scholar 

  27. Vogt, L.: Towards a semantic approach to numerical tree inference in phylogenetics. Cladistics 34, 200–224 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vogt, L., Baum, R., Köhler, C., Meid, S., Quast, B., Grobe, P. (2019). Using Semantic Programming for Developing a Web Content Management System for Semantic Phenotype Data. In: Auer, S., Vidal, ME. (eds) Data Integration in the Life Sciences. DILS 2018. Lecture Notes in Computer Science(), vol 11371. Springer, Cham. https://doi.org/10.1007/978-3-030-06016-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06016-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06015-2

  • Online ISBN: 978-3-030-06016-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics