Skip to main content

Soft Image Segmentation: On the Clustering of Irregular, Weighted, Multivariate Marked Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 936))

Abstract

The contribution exposes and illustrates a general, flexible formalism, together with an associated iterative procedure, aimed at determining soft memberships of marked nodes in a weighted network. Gathering together spatial entities which are both spatially close and similar regarding their features is an issue relevant in image segmentation, spatial clustering, and data analysis in general. Unoriented weighted networks are specified by an “exchange matrix”, determining the probability to select a pair of neighbors. We present a family of membership-dependent free energies, whose local minimization specifies soft clusterings. The free energy additively combines a mutual information, as well as various energy terms, concave or convex in the memberships: within-group inertia, generalized cuts (extending weighted Ncut and modularity), and membership discontinuities (generalizing Dirichlet forms). The framework is closely related to discrete Markov models, random walks, label propagation and spatial autocorrelation (Moran’s I), and can express the Mumford-Shah approach. Four small datasets illustrate the theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Besides the generalized discontinuity functionals, already addressed in the proceedings, but unfortunately referred there to as “cut functionals”.

References

  1. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  2. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 469–475 (2006)

    Article  Google Scholar 

  3. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006)

    Article  Google Scholar 

  4. Berger, J., Snell, J.L.: On the concept of equal exchange. Syst. Res. Behav. Sci. 2, 111–118 (1957)

    Article  MathSciNet  Google Scholar 

  5. Ceré, R., Bavaud, F.: Multi-labelled image segmentation in irregular, weighted networks: a spatial autocorrelation approach. In: Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management, Scitepress, pp. 62–69 (2017)

    Google Scholar 

  6. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical report CMU-CALD-02-107, Carnegie Mellon University (2002)

    Google Scholar 

  7. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures inlarge-scale networks. Phys. Rev. E 76, 036106 (2007)

    Article  Google Scholar 

  8. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bavaud, F.: Aggregation invariance in general clustering approaches. Adv. Data Anal. Classif. 3, 205–225 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bavaud, F.: On the Schoenberg transformations in data analysis: theory and illustrations. J. Classif. 28, 297–314 (2011)

    Article  MathSciNet  Google Scholar 

  11. Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recogn. Lett. 11, 589–594 (1990)

    Article  Google Scholar 

  12. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  13. Petitot, J.: An introduction to the Mumford-Shah segmentation model. J. Physiol.-Paris 97, 335–342 (2003)

    Article  Google Scholar 

  14. Vitti, A.: The Mumford-Shah variational model for image segmentation: an overview of the theory, implementation and use. ISPRS J. Photogramm. Remote. Sens. 69, 50–64 (2012)

    Article  Google Scholar 

  15. Gaumer, P., Moliterni, C.: Dictionnaire mondial de la bande dessinée. Larousse, Paris (1994)

    Google Scholar 

  16. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watershed: a unifying graph-based optimization framework. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1384–1399 (2011)

    Article  Google Scholar 

  17. Fouss, F., Saerens, M., Shimbo, M.: Algorithms and Models for Network Data and Link Analysis. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  18. Bavaud, F., Guex, G.: Interpolating between random walks and shortest paths: a path functional approach. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 68–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35386-4_6

    Chapter  Google Scholar 

  19. Françoisse, K., Kivimäki, I., Mantrach, A., Rossi, F., Saerens, M.: A bag-of-paths framework for network data analysis. arXiv preprint arXiv:1302.6766 (2013)

  20. Devooght, R., Mantrach, A., Kivimäki, I., Bersini, H., Jaimes, A., Saerens, M.: Random walks based modularity: application to semi-supervised learning. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 213–224. ACM (2014)

    Google Scholar 

  21. Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: 2007 IEEE 11th International Conference on Computer Vision. ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  22. Guex, G.: Interpolating between random walks and optimal transportation routes: flow with multiple sources and targets. Phys. A: Stat. Mech. Appl. 450, 264–277 (2016)

    Article  MathSciNet  Google Scholar 

  23. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Mathematical Association of America, Washington D.C. (1984)

    MATH  Google Scholar 

  24. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1768–1783 (2006)

    Article  Google Scholar 

  25. Critchley, F., Fichet, B.: The partial order by inclusion of the principal classes of dissimilarity on a finite set, and some of their basic properties. In: Van Cutsem, B. (ed.) Classification and Dissimilarity Analysis. LNS, vol. 93, pp. 5–65. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-2686-4_2

    Chapter  MATH  Google Scholar 

  26. Bivand, R.S., Pebesma, E.J., Gomez-Rubio, V., Pebesma, E.J.: ApplieD Spatial Data Analysis with R, vol. 747248717. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78171-6

    Book  MATH  Google Scholar 

  27. LeSage, J.P.: An introduction to spatial econometrics. Revue d’économie industrielle 19–44 (2008). Field number 123

    Google Scholar 

  28. Arbia, G.: Spatial Data Configuration in Statistical Analysis of rEgional Economic and Related Problems, vol. 14. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-009-2395-9

    Book  Google Scholar 

  29. Anselin, L.: Spatial Econometrics: Methods and Models, vol. 4. Springer, Dordrech (2013). https://doi.org/10.1007/978-94-015-7799-1

    Book  Google Scholar 

  30. Griffith, D.A.: Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through Theory and Scientific Visualization. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-540-24806-4

    Book  Google Scholar 

  31. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B (Methodol.) 48, 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. R. Stat. Soc. Ser. B (Methodol.) 51, 271–279 (1989)

    Google Scholar 

  33. Anselin, L.: Local indicators of spatial association - LISA. Geogr. Anal. 27, 93–115 (1995)

    Article  Google Scholar 

  34. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 274–285. SIAM (2005)

    Google Scholar 

  35. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  36. Lebichot, B., Saerens, M.: An experimental study of graph-based semi-supervised classification with additional node information. arXiv preprint arXiv:1705.08716 (2017)

  37. Yen, L., Saerens, M., Mantrach, A., Shimbo, M.: A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2008, pp. 785–793. ACM, New York (2008)

    Google Scholar 

  38. Bavaud, F.: Euclidean distances, soft and spectral clustering on weighted graphs. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 103–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_13

    Chapter  Google Scholar 

  39. Kivimäki, I., Shimbo, M., Saerens, M.: Developments in the theory of randomized shortest paths with a comparison of graph node distances. Phys. A: Stat. Mech. Appl. 393, 600–616 (2014)

    Article  Google Scholar 

  40. Bavaud, F.: Testing spatial autocorrelation in weighted networks: the modes permutation test. J. Geogr. Syst. 3, 233–247 (2013)

    Article  Google Scholar 

  41. Cliff, A.D., Ord, J.K.: Spatial Processes: Models & Applications. Taylor & Francis, Didcot (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Ceré .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Computing the Exchange Matrix E(Af)

Defining an exchange matrix E both weight-compatible (that is obeying \(E\mathbf{1}=f\), where the regional weights f are given) and reflecting the spatial structure contained in the binary adjacency matrix \(A=(a_{ij})\) is a crucial, necessary step in the “ZED formalism” under consideration. Two constructions, not trivial, nor that difficult either, have been investigated in this paper, namely the diffusive specification and the Metropolis-Hastings specification.

The Diffusive Exchange Matrix. Consider a time-continuous Markov chain W on the n pixels, whose infinitesimal generator or rate matrix is proportional to the adjacency matrix A, and conveniently normalized so that f constitutes the stationary distribution of W. The resulting exchange matrix \(E=\varPi W\) turns out to be symmetric and p.s.d., and given by

(20)

where \(\varPi = \text{ diag }(f)\), and

$$\begin{aligned} \varPsi = \varPi ^{-1/2}\frac{LA}{\mathrm {trace}{(LA)}} \varPi ^{-1/2} \qquad \qquad (LA)_{ij} = \delta _{ij} \, a_{i\bullet } - a_{ij} \end{aligned}$$

LA is the Laplacian of matrix A, and matrix exponentiation (20) can be carried out by the spectral decomposition of \(\varPsi \). Specification (20) describes a diffusive process at time \(t>0\), with limits \(\lim _{t\rightarrow 0} E(A, f, t)=\varPi \) (“frozen network”, consisting of n isolated nodes: spatial autarchy), and \(\lim _{t\rightarrow \infty } E(A, f, t)=ff'\) (“complete network”, with independent selection of the node pairs: complete mobility). Identity \(\text{ trace }(E(t)) = 1-t + 0(t^2)\) shows t to measure, for \(t\ll 1\), the proportion of distinct regional pairs in the joint distribution E.

The Metropolis-Hastings Exchange Matrix. The natural random walk with Markov transition matrix \(a_{ij}/a_{i\bullet }\) correctly describes the spatial structure of the network, but its stationary distribution is \(g_i=a_{i\bullet }/a_{\bullet \bullet }\) instead of \(f_i\). Applying the Metropolis-Hastings algorithm defines a recalibrated random walk with stationary distribution f, ending up in a weight-compatible exchange matrix of the form:

$$\begin{aligned} E =\varPi -LB\qquad \text{ where }\quad B=(b_{ij}),\, \, b_{ij}=\min (\kappa _i,\kappa _j)\cdot \frac{a_{ij}}{a_{\bullet \bullet }}\, \, \text{ and } \, \, \kappa _i=\frac{f_i}{g_i} \end{aligned}$$
(21)

and \((LB)_{ij} = \delta _{ij} \, b_{i\bullet } - b_{ij} \) is the Laplacian of B. Expression (21) does not require spectral decomposition, and its computation is much faster than (20) for increasing n (Fig. 15). However, E in (21) is not p.s.d in general, thus threatening the concavity of \(\mathcal{C}^\kappa [Z]\) (Sect. 5.1).

Fig. 15.
figure 15

Deterministic profiling : CPU time for computing the exchange matrices E(fAt) (20) and \(E_{M.-H.}(f, A)\) (21), as a function of the number of pixels n in a regular setting and performed with Python 2.7.12 on a CPU Intel Core i7 two Core with a frequency \(3.1\,\text{ GHz }\) (Mac OS X 10.10.5).

1.2 Testing Spatial Autocorrelation

Under the null hypothesis \(H_0\) of stationarity and absence of spatial autocorrelation, univariate features are independent, and follow a distribution with common mean and variance inversely proportional to the size of the region, namely \(E(X_{ik})=\mu _k\) and \(\text{ Cov }(X_{ik},X_{jk})=\delta _{ij}\sigma ^2_k/f_i\) [40]. Under normal approximation, the expected value of the multivariate Moran’s I (2) reads

$$\begin{aligned} E_0(I) = \frac{\text{ tr }(W)-1}{n-1} \qquad \text{ where } \quad w_{ij} = \frac{e_{ij}}{f_i} \end{aligned}$$

and its the variance reads

$$\begin{aligned} \text{ Var }_0(I) = \frac{2}{n^2-1} \left[ \text {trace}(W^2) - 1 - \frac{(\text {trace}(W) - 1)^2}{n-1}\right] \end{aligned}$$

Spatial autocorrelation is thus significant at level \(\alpha \) if \(z= |I - E_0(I)|/ \sqrt{\text{ Var }_0}(I)\, \ge \, u_{1-\frac{\alpha }{2}}\), where \(u_{1-\frac{\alpha }{2}}\) is the quantile of the standard normal distribution.

Alternatively, a permutation test can be performed (e.g. [41]), by generating a series of values \(\hat{I}\) of the transformed Moran index, where \(\hat{I}\) obtains as (2) with replaced by . The plain specification, which consists in replacing the profile \(x_{ik}\) of region i by the profile \(\hat{x}_{ik}=x_{\pi (i)k}\) of another region \(\pi (i)\) (where \(\pi \) denotes a permutation), that is in defining \(\hat{D}_{ij}=D_{\pi (i),\pi (j)}\), is somehow flawed in the weighted case, in view of the heteroscedasticity of the distribution of \(X_{ik}\). Instead, the quantities \(\sqrt{f_i}(x_{ik}-\bar{x}_k)\) (with \(\bar{x}_k=\sum _i f_i x_{ik}\)) for \(i=1,\ldots , n\) are expected to follow the same distribution under \(H_0\), thus insuring the validity of the weight-corrected specification, with (see Fig. 2)

$$\begin{aligned} \hat{x}_{ik}=\bar{x}_k+\sqrt{\frac{f_{\pi (i)}}{f_i}}(x_{\pi (i)k}-\bar{x}_k) \qquad \text{ and }\qquad \hat{D}_{ij}=\Vert \hat{x}_i-\hat{x}_j\Vert ^2. \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ceré, R., Bavaud, F. (2019). Soft Image Segmentation: On the Clustering of Irregular, Weighted, Multivariate Marked Networks. In: Ragia, L., Laurini, R., Rocha, J. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2017. Communications in Computer and Information Science, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-030-06010-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06010-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06009-1

  • Online ISBN: 978-3-030-06010-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics