Skip to main content

Picosecond Pulsed High-Peak-Power Lasers

  • Chapter
  • First Online:
Progress in Photon Science

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 119))

Abstract

Recent trends in the use and development of advanced schemes of high peak-power picosecond lasers are reviewed. Pulsed (pulsed repetitive) high-peak-power picosecond lasers of millijoule and multi-millijoule single pulse level operating at reasonably high repetition rates are required in a number of scientific and technological applications. The developed approach utilizes active-passive mode-locked and negative feedback controlled oscillator that provides generation of stable, closed to transform limited pulses with pulse duration of 25 ps (with Nd:YAG) and 16 ps (with Nd:YLF). Oscillator—regenerative amplifier scheme based on the common diode-end-pumped laser crystal generates pulses up to 1.2 mJ with Nd:YAG and up to 2 mJ with Nd:YLF crystals. Two-pass Nd:YAG diode-end-pumped amplifier provides output radiation of 4 mJ single pulse energy at 300 Hz repetition rate, that was converted in the second harmonic with more than 60% efficiency. Numerical modeling allows adequate description of the pulse formation process. Using 300 μm thickness Fabry-Perot etalons with different reflection coatings inside oscillator provided generation of pulses with increased up to 120, 180 and 400 ps durations. Aberrative character of thermal lens and mode structure at end-pump geometry were analyzed using decomposition on embedded beams. It was supposed that resonator stability range might be enhanced owing to adaptive action of the aberration lens. Optimized pulse diode-end-pumped double-pass amplifier schemes utilizing Nd:YLF, Nd:YAG and Nd:YVO4 crystals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Wang, K.B. Eisenthal, Picosecond laser studies of ultrafast processes in chemistry. J. Chem. Ed. 59(6), 482–489 (1982)

    Article  Google Scholar 

  2. S.-B. Zhu, J. Lee, G.W. Robinson, Effects of an intense picosecond laser on liquid carbon disulfide: a molecular dynamics study. J. Opt. Soc. Am. B 6(2), 250–256 (1989)

    Article  ADS  Google Scholar 

  3. V.G. Arakcheev, V.V. Kireev, V.B. Morozov, A.N. Olenin, V.G. Tunkin, A.A. Valeev, D.V. Yakovlev, Collisionally induced dephasing and rotational energy transfer in CO2 Fermi dyad “blue” Q-branch 1388 cm−1. J. Raman Spectr. 38(8), 1046–1051 (2007)

    Article  ADS  Google Scholar 

  4. A. Montello, M. Nishihara, J.W. Rich, I.V. Adamovich, W.R. Lempert, Picosecond CARS measurements of nitrogen rotational/translational and vibrational temperature in a nonequilibrium Mach 5 flow. Exp. Fluids 54, 1422 (2013)

    Article  Google Scholar 

  5. R. Knappe, Applications of picoseconds lasers and pulse-bursts in precision manufacturing. Proc. SPIE 8243, 82430I (2012)

    Article  ADS  Google Scholar 

  6. S. Brüning, G. Hennig, S. Eifel, A. Gillner, Ultrafast scan techniques for 3D micrometer structuring of metal surfaces with high repetitive ps-laser pulses, in Lasers in Manufacturing (Munich, 2011)

    Google Scholar 

  7. P. Likschat, A. Demba, S. Weissmantel, Ablation of steel using picoseconds laser pulses in burst mode. Appl. Phys. A 123, 137 (2017)

    Article  ADS  Google Scholar 

  8. G. Scotti, D. Trusheim, P. Kanninen, D. Naumenko, M. Shulz-Ruhtenberg, V. Snitka, T. Kallio, S. Franssila, Picosecond laser ablation for silicon micro fuel cell fabrication. J. Micromech. Microeng. 23, 055021 (2013)

    Article  ADS  Google Scholar 

  9. J. Albello, P. Piogovsky, J. O’Brien, B. Baird, Picosecond laser micromachining of advanced semiconductor logic devices. Proc. SPIE 6871, 687122 (2008)

    Article  Google Scholar 

  10. R. Moser, M. Kunzer, C. Gossler, K. Kӧhler, W. Pletschen, U.T. Schwarz, J. Wagner, Laser processing of gallium nitride-based light-emitting diodes with ultraviolet picoseconds laser pulses. Opt. Eng. 51(11), 114301 (2012)

    Article  ADS  Google Scholar 

  11. E. Markauskas, P. Gečys, I. Repins, C. Beall, G. Račiukaitis, Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations. Sol. Energy 150, 246–254 (2017)

    Article  ADS  Google Scholar 

  12. M. Domke, G. Heise, I. Richter, S. Sarrach, H.P. Huber, Pump-probe investigations on the laser ablation of CIS thin film solar cells. Phys. Procedia 12, 396–403 (2011)

    Article  ADS  Google Scholar 

  13. G.J. Spuhler, R. Paschotta, U. Keller, M. Moser, M.J.P. Dymott, D. Kopf, J. Meyer, K.J. Weingarten, J.D. Kmetec, J. Alexander, G. Truong, Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam. Opt. Lett. 24(8), 528–530 (1999)

    Article  ADS  Google Scholar 

  14. J. Kleinbauer, R. Knappe, R. Wallenstein, A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet. Appl. Phys. B 80, 315–320 (2005)

    Article  ADS  Google Scholar 

  15. X. Wushouer, P. Yan, H. Yu, Q. Liu, X. Fu, X. Yan, M. Gong, High peak power picosecond hybrid fiber and solid-state amplifier system. Laser Phys. Lett. 7(9), 644–649 (2010)

    Article  ADS  Google Scholar 

  16. Z.G. Peng, M. Chen, C. Yang, L. Chang, G. Li, A cavity-dumped and regenerative amplifier system for generating high-energy, high-repetition-rate picosecond pulses. Jpn. J. Appl. Phys. 54, 028001 (2015)

    Article  ADS  Google Scholar 

  17. Z. Ma, D.-J. Li, P. Shi, P.-X. Hu, N.-L. Wu, K.-M. Du, Compact multipass Nd:YVO4 slab laser amplifier. J. Opt. Soc. B. 24(5), 1061–1065 (2007)

    Article  ADS  Google Scholar 

  18. C.K. Nielsen, B. Ortac¸, T. Schreiber, J. Limpert, R. Hohmuth,W. Richter, A. Tünnermann, Self-starting self-similar all-polarization maintaining Yb-doped fiber laser. Opt. Expr. 13(23), 9346–9351 (2005)

    Article  ADS  Google Scholar 

  19. L.A. Gomes, L. Orsila, T. Jouhti, O.G. Okhotnikov, Picosecond SESAM-based ytterbium mode-locked fiber lasers. IEEE J. Sel. Top. Quant. Electr. 10(1), 129–136 (2004)

    Article  ADS  Google Scholar 

  20. M.E. Fermann, I. Hartl, Ultrafast fiber laser technology. IEEE J. Sel. Top. Quant. Electr. 15(1), 191–206 (2009)

    Article  ADS  Google Scholar 

  21. P. Dupriez, A. Piper, A. Malinowski, J.K. Sahu, M. Ibsen, B.C. Thomsen, Y. Jeong, L.M.B. Hickey, M.N. Zervas, J. Nilsson, D.J. Richardson, High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm. IEEE Photonics Technol. Lett. 18(9), 1013–1015 (2006)

    Article  ADS  Google Scholar 

  22. H.-Y. Chan, S. Alam, L. Xu, J. Bateman, D.J. Richardson, D.P. Shepherd, Compact, high-pulse-energy, high-power, picoseconds master oscillator power amplifier. Opt. Expr. 22(18), 21938–21942 (2014)

    Article  ADS  Google Scholar 

  23. S. Matsubara, M. Tanaka, M. Takama, H. Hitotsuya, T. Kobayashi, S. Kawato, A picosecond thin-rod Yb:YAG regenerative laser amplifier with the high average power of 20W. Laser Phys. Lett. 10, 055810–055814 (2013)

    Article  ADS  Google Scholar 

  24. K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F.Ö. Ilday, T.Y. Fan, F.X. Kärtner, Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. Opt. Lett. 33(21), 2473–2475 (2008)

    Article  ADS  Google Scholar 

  25. Z. Ma, D. Li, P. Shi, P. Hu, N. Wu, K. Du, Compact multipass Nd:YVO4 slab laser amplifier based on a hybrid resonator. J. Opt. Soc. Am. B. 24(5), 1061–1064 (2007)

    Article  ADS  Google Scholar 

  26. K.K. Chen, J.H.V. Price, S. Alam, J.R. Hayes, D. Lin, A. Malinowski, D.J. Richardson, Polarisation maintaining 100 W Yb-fiber MOPA producing μJ pulses tunable in duration from 1 to 21 ps. Opt. Expr. 18(14), 14385–1394 (2010)

    Article  ADS  Google Scholar 

  27. T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)

    Article  ADS  Google Scholar 

  28. D.J. Richardson, J. Nilsson, W.A. Clarkson, High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27(11), B63–B92 (2010)

    Article  Google Scholar 

  29. H. Lin, J. Li, X. Liang, 105 W, <10 ps, TEM 00 laser output based on an in-band pumped Nd: YVO4 Innoslab amplifier. Opt. Lett. 37(13), 2634–2636 (2012)

    Article  ADS  Google Scholar 

  30. P. Russbueldt, D. Hoffmann, M. Hӧfer, J. Lӧhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, R. Poprawe, Innoslab amplifiers. IEEE J. Sel. Top. Quant. Electr. 21(1), 3100117 (2015)

    Article  Google Scholar 

  31. D. Li, K. Du, Picosecond laser with 400 W average power and 1 mJ pulse energy. Proc. SPIE 7912, 79120N (2011)

    Article  ADS  Google Scholar 

  32. A. Giesen, J. Speiser, Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J. Sel. Top. Quant. Electron 13(3), 598–609 (2007)

    Article  ADS  Google Scholar 

  33. C.J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, Toward millijoule-level high-power ultrafast thin-disk oscillators. IEEE J. Sel. Top. Quant. Electron 13(3), 598–609 (2007)

    Article  Google Scholar 

  34. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M.A. Ahmed, T. Graf, Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Opt. Expr. 23(16), 21064–21077 (2015)

    Article  ADS  Google Scholar 

  35. J. Fischer, A.-C. Heinrich, S. Maier, J. Jungwirth, D. Brida, A. Leitenstorfer, 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate. Opt. Lett. 41, 246–249 (2016)

    Article  ADS  Google Scholar 

  36. T. Seeger, J. Kiefer, A. Leipertz, B.D. Patterson, C.J. Kliewer, T.B. Settersten, Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry. Opt. Lett. 34(23), 3755–3757 (2009)

    Article  ADS  Google Scholar 

  37. G. Seeber, Satellite Geodesy (Walter de Gruyter, Berlin, New York, 2003) (Chapter 8)

    Google Scholar 

  38. B. Gourine, French transportable laser ranging station: positioning campaigns for satellite altimeter calibration missions in occidental Mediterranean Sea. Larhyss J. 12, 57–69 (2013)

    Google Scholar 

  39. J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Lunar laser ranging: a continuing legacy of the Apollo Program. Science 265(5171), 482–490 (1994)

    Article  ADS  Google Scholar 

  40. J.G. Williams, S.G. Turyshev, D.H. Boggs, Progress in Lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)

    Article  ADS  Google Scholar 

  41. R. Intartaglia, K. Bagga, F. Brandi, Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Opt. Expr. 22(3), 3117–3127 (2014)

    Article  ADS  Google Scholar 

  42. E.I. Gacheva, A.K. Poteomkin, SYu. Mironov, V.V. Zelenogorskii, E.A. Khazanov, K.B. Yushkov, A.I. Chizhikov, V.Ya. Molchanov, Fiber laser with random-access pulse train profiling for a photoinjector driver. Photonics Res. 5(4), 293–298 (2017)

    Article  Google Scholar 

  43. M. Petrarca, M. Martyanov, M.S. Divall, G. Luchinin, Study of the powerful Nd:YLF laser amplifiers for the CTF3 photoinjectors. IEEE J. Quant. Electr. 47, 306–313 (2011)

    Article  ADS  Google Scholar 

  44. G. Mourou, C.V. Stancampiano, A. Antonetti, A. Orszag, Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Appl. Phys. Lett. 39(4), 295–296 (1981)

    Article  ADS  Google Scholar 

  45. W. Koechner, Solid-State Laser Engineering (Springer, 2014)

    Google Scholar 

  46. R.-Q. Xu, Y.-R. Song, Z.-K. Dong, K.-X. Li, J.-R. Tian, Compact Yb-doped mode-locked fiber laser with only one polarized beam splitter. Appl. Opt. 56(6), 1674–1681 (2017)

    Article  ADS  Google Scholar 

  47. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann, High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett. 32(15), 2115 (2015)

    Article  ADS  Google Scholar 

  48. D. Derickson, R. Helkey, A. Mar, J. Karin, J. Wasserbauer, J. Bowers, Short pulse generation using multisegment mode-locked semiconductor lasers. IEEE J. Quant. Electr. 28(10), 2186–2202 (1992)

    Article  ADS  Google Scholar 

  49. J.C. Balzer, T. Schlauch, T. Hoffmann, A. Klehr, G. Erbert, M.R. Hofmann, Modelocked semiconductor laser system with pulse picking for variable repetition rate. Electron. Lett. 47(25), 1387–1388 (2011)

    Article  Google Scholar 

  50. P. Heinz, A. Laubereau, Feedback-controlled mode-locking operation of Nd-doped crystal lasers. J. Opt. Soc. Am. B 7(2), 182–186 (1990)

    Article  ADS  Google Scholar 

  51. A. Agnesi, C. Pennacchio, G.C. Reali, V. Kubecek, High-power diode-pumped picosecond Nd3+:YVO4 laser. Opt. Lett. 22(21), 1645–1647 (1997)

    Article  ADS  Google Scholar 

  52. A.V. Ramamurthi, K.P.J. Reddy, Theory of combined AM and high-harmonic FM mode-locked laser. Pramana-J. Phys. 52(1), 19–24 (1999)

    Article  ADS  Google Scholar 

  53. U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, J.A. der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE. Sel. Top. Quant. Electr. 2(3), 1077–1079 (1996)

    Google Scholar 

  54. U. Keller, Recent development in compact ultrafast lasers. Nature 424, 831–838 (2003); U. Keller, Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B. 100(1), 15–28 (2010)

    Google Scholar 

  55. M.V. Gorbunkov, A.V. Konyashkin, P.V. Kostryukov, V.B. Morozov, A.N. Olenin, V.A. Rusov, L.S. Telegin, V.G. Tunkin, Y. Shabalin, D.V. Yakovlev, Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers. Quant. Electron. 35(1), 2–6 (2005)

    Article  ADS  Google Scholar 

  56. A. Del Corno, G. Gabetta, G.C. Reali, V. Kubecek, J. Marek, Active-passive mode-locked Nd:YAG laser with passive negative feedback. Opt. Lett. 15(13), 734–736 (1990)

    Article  ADS  Google Scholar 

  57. A.A. Karnaukhov, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, Precise synchronization of qcw pumped active-passive mode locked picosecond lasers. J. Phys. Conf. Ser. 414, 012–027 (2013)

    Google Scholar 

  58. A. Sennaroglu, Solid-State Lasers and Applications (2007), pp. 1–76

    Google Scholar 

  59. P. Wang, S.-H. Zhou, K.K. Lee, Y.C. Chen, Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser. Opt. Comm. 114, 439–441 (1995)

    Article  ADS  Google Scholar 

  60. J.J. Zayhowski, Passively Q-switched Nd:YAG microchip lasers and applications. J. All. Comp. 303–304, 393–400 (2000)

    Article  Google Scholar 

  61. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann, High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett. 32(15), 2115–2117 (2007)

    Article  ADS  Google Scholar 

  62. G.J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, U. Keller, Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B. 16(3), 376–388 (1999)

    Article  ADS  Google Scholar 

  63. B. Ryvkin, E. Avrutin, J. Kostamovaara, Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching. IEEE J. Lightwave Technol. 27(12), 2125–2131 (2009)

    Article  ADS  Google Scholar 

  64. J.E. Murray, W.H. Lowdermilk, Nd:YAG regenerative amplifier. J. Appl. Phys. B. 51(7), 3548–3555 (1980)

    Article  ADS  Google Scholar 

  65. P. Bado, M. Bouvier, J.S. Coe, Nd:YLF mode-locked oscillator and regenerative amplifier. Opt. Lett. 12(5), 319–321 (1987)

    Article  ADS  Google Scholar 

  66. J.C. Postlewaite, J.B. Miers, C.C. Reiner, D.D. Dlott, Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout. IEEE J. Quant. Electr. 24(2), 411–417 (1988)

    Article  ADS  Google Scholar 

  67. M.D. Dawson, W.A. Schroeder, D.P. Norwood, A.L. Smirl, J. Weston, R.N. Ettelbrick, R. Aubert, Characterization of a high-gain picosecond flash-lamp-pumped Nd:YAG regenerative amplifier. Opt. Lett. 13(11), 990–992 (1988)

    Article  ADS  Google Scholar 

  68. D.R. Walker, C.J. Flood, H.M. van Driel, U.J. Greiner, H.H. Klingenberg, High power diode-pumped Nd:YAG regenerative amplifier for picoseconds pulses. Appl. Phys. Lett. 65(16), 1992–1994 (1994)

    Article  ADS  Google Scholar 

  69. M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, G. Hollemann, A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picoseconds pulses. Appl. Phys. B 78, 287–290 (2004)

    Article  ADS  Google Scholar 

  70. J. Kleinbauer, R. Knappe, R. Wallenstein, Ultrashort pulse lasers and amplifiers based on Nd:YVO4 and Yb:YAG bulk crystals, in: Femtosecond Technology for Technical and Medical Applications, ed. by F. Dausinger, F. Lichtner, H. Lubatschowski; Topics Appl. Phys. 96, 17–34 (2004)

    Google Scholar 

  71. M. Lührmann, C. Theobald, R. Wallenstein, J.A. L’huillier, High energy cw-diode pumped Nd:YVO4 regenerative amplifier with efficient second harmonic generation. Opt. Expr. 17(25), 22761–22766 (2009)

    Article  ADS  Google Scholar 

  72. M.V. Gorbunkov, P.V. Kostryukov, V.B. Morozov, A.N. Olenin, L.S. Telegin, V.G. Tunkin, D.V. Yakovlev, Spatial radiation intensity distribution of linear diode arrays and calculation of inversion in fiber-coupled end-pumped solid-state lasers. Quant. Electr. 35(12), 1121–1125 (2005)

    Article  ADS  Google Scholar 

  73. V.B. Morozov, A.N. Olenin, V.G. Tunkin, D.V. Yakovlev, Operation conditions for a picosecond laser with an aberration thermal lens under longitudinal pulsed diode pumping. Quant. Electr. 41(6), 508–514 (2011)

    Article  ADS  Google Scholar 

  74. https://www.jenoptik.us/products/lasers/high-power-diode-lasers/diode-laser-modules

  75. H.A. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quant. Electr. 6(6), 1173–1185 (2000)

    Article  ADS  Google Scholar 

  76. N.G. Mikheev, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, Picosecond lasers with the dynamical operation control. Proc. SPIE 9917, 99170A (2016)

    ADS  Google Scholar 

  77. D.J. Kuizenga, A.E. Siegman, FM and AM mode locking of the homogeneous laser-part I: theory. IEEE J. Quant. Electr. QE-6(11), 694–708 (1970)

    Article  ADS  Google Scholar 

  78. H. Roskos, T. Robl, A. Seilmeier, Pulse shortening to 25 ps in a cw mode-locked Nd:YAG laser by introducing an intracavity etalon. Appl. Phys. B 40, 59–65 (1986)

    Article  ADS  Google Scholar 

  79. Q.S. Panga, Y. Liub, L. Changa, L.Z. Xua, C. Yanga, M. Chena, G. Lia, Adjustable picosecond pulse duration in a LD end pumped SESAM passively mode-locked Nd:YVO4 laser. Laser Phys. 21(6), 1009–1012 (2011)

    Article  ADS  Google Scholar 

  80. A.E. Siegman, How to (maybe) measure laser beam quality. OSA TOPS 17, 184–199 (1998)

    Google Scholar 

  81. A.E. Siegman, Defining the effective radius of curvature for a nonideal optical beam. IEEE J. Quant. Electr. 27(5), 1146–1148 (1991)

    Article  ADS  Google Scholar 

  82. L.M. Frantz, J.S. Nodvik, Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 34, 2346 (1963)

    Article  ADS  Google Scholar 

  83. C. Dolda, G. Eberleb, K. Jefimovsc, M. Axtnerd, F. Pudea, K. Wegenera, Analysis of damage thresholds of laser scanning mirrors using ultrashort laser pulses. Phys. Procedia 12, 445–451 (2011)

    Article  ADS  Google Scholar 

  84. D.E. Zelmon, K.L. Schepler, S. Guha, D.J. Rush, S.M. Hegde, L.P. Gonzalez, J. Lee, Optical properties of Nd-doped ceramic yttrium aluminum garnet. Proc. SPIE. 5647; Laser-Induced Damage in Optical Materials, vol. 2004 (2005), pp. 255–264

    Google Scholar 

Download references

Funding

The work was partly granted by M.V. Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav B. Morozov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mikheev, N.G., Morozov, V.B., Olenin, A.N., Tunkin, V.G., Yakovlev, D.V. (2019). Picosecond Pulsed High-Peak-Power Lasers. In: Yamanouchi, K., Tunik, S., Makarov, V. (eds) Progress in Photon Science. Springer Series in Chemical Physics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-05974-3_4

Download citation

Publish with us

Policies and ethics