Skip to main content

Effects of Hyperfine Interaction in Atomic Photoionization

  • Chapter
  • First Online:
Progress in Photon Science

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 119))

  • 941 Accesses

Abstract

The chapter is devoted to theoretical consideration of the role of hyperfine interaction in atomic photoionization. The interaction between nuclear spin and an atomic shell considered to give a small correction in a variety of phenomena may have significant effects on polarization and correlation parameters of a process. We outline a theoretical approach based on statistical tensors and density matrices for determination of photoelectron angular distribution in two-colour atomic ionization accounting for their evolution caused by nuclear spin. As a practical example we consider double resonant ionization of Xe through excitation via discrete and Rydberg autoionizing states, as in the first isotope-selective experiment in VUV domain (O’Keeffe et al in Phys Rev Lett 111:243002(1)–243002(5), 2013 [44]). Variations in the angular pattern for the different isotopes and light polarization are shown. The possibility to determine the hyperfine constant is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Atomic units are used hereafter \(\hbar =e=m_e = 1\), unless otherwise specified.

  2. 2.

    In the jK-coupling scheme, the \(nl[K]_J\) indicates, for the Xe atom, that the total angular momentum j of the \(5p^5_j\) core is first coupled to the orbital momentum of the excited electron \(\varvec{\ell }\), \(\varvec{j} + \varvec{\ell } = \varvec{K}\), with subsequent coupling of spin of this electron, \(\varvec{K} + \varvec{s} = \varvec{J}\).

  3. 3.

    The easiest way to obtain this is to consider the system in the initial state as a product of two subspaces, the electronic shell momentum and the nuclear spin \(\hat{J}\bigotimes \hat{I}\), and then, couple them to the total angular momentum \(\hat{F}\) only after the excitation.

  4. 4.

    The statistical tensor (12.5) has a dimension of probability per second, while the dimension of the two-photon cross section (12.7) is \(\text {cm}^2/\text {s}\).

  5. 5.

    The first 6j-symbol was missed in (6) of [26].

  6. 6.

    Statistical tensors of photon in the dipole approximation are defined according to (12.2) for a particle with the angular momentum \(J=1\) having zero projection on the direction of the propagation.

References

  1. E.B. Aleksandrov, V.N. Kulyasov, Sov. Phys. JETP 28, 396–400 (1969)

    ADS  Google Scholar 

  2. E.B. Aleksandrov, Sov. Phys. JETP 29, 846–848 (1969)

    ADS  Google Scholar 

  3. E.B. Aleksandrov, V.P. Kozlov, V.N. Kulyasov, Sov. Phys. JETP 39, 620–626 (1974)

    ADS  Google Scholar 

  4. S. Aloïse, P. O’Keeffe, D. Cubaynes, M. Meyer, A.N. Grum-Grzhimailo, Phys. Rev. Lett. 94, 223002(1)–223002(4) (2005)

    Google Scholar 

  5. S. Baier, A.N. Grum-Grzhimailo, N.M. Kabachnik, J. Phys. B 27, 3363–3388 (1994)

    Article  ADS  Google Scholar 

  6. V.V. Balashov, A.N. Grum-Grzhimailo, N.M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions. A Practical Theory Course (Kluwer Plenum, New York, 2000)

    Google Scholar 

  7. B.B. Birkett, J.-P. Briand, P. Charles et al., Phys. Rev. A 47, R2454–R2457 (1993)

    Article  ADS  Google Scholar 

  8. K. Blum, Density Matrix Theory and Applications, 2nd edn (Plenum, New York, 1996)

    Chapter  Google Scholar 

  9. M. Born, J.R. Oppenheimer, Annalen der Physik 389, 457–484 (1927)

    Article  ADS  Google Scholar 

  10. T. Brage, P.G. Judge, C.R. Proffitt, Phys. Rev. Lett. 89, 281101(1)–281101(4) (2002)

    Google Scholar 

  11. A.W. Carr, M. Saffman, Phys. Rev. Lett. 117, 150801(1)–150801(6) (2016)

    Google Scholar 

  12. R.-L. Chien, O.C. Mullins, R.S. Berry, Phys. Rev. A 28, 2678–2084 (1983)

    Article  Google Scholar 

  13. L.E. Cuéllar, C.S. Feigerle, H.S. Carman Jr., R.N. Compton, Phys. Rev. A 45, 6437–6440 (1991)

    Article  ADS  Google Scholar 

  14. B. Denne, S. Huldt, J. Pihl, R. Hallin, Phys. Scr. 22, 45–48 (1980)

    Article  ADS  Google Scholar 

  15. J.A. Duncanson Jr., M.P. Strand, A. Lindgård, R.S. Berry, Phys. Rev. Lett. 37, 987–990 (1976)

    Article  ADS  Google Scholar 

  16. L. Essen, J.V.L. Parry, Nature 176, 280–282 (1955)

    Article  ADS  Google Scholar 

  17. U. Fano, Phys. Rev. 124, 1866–1978 (1961)

    Article  ADS  Google Scholar 

  18. U. Fano, J.H. Macek, Phys. Rev. 45, 553–573 (1973)

    Google Scholar 

  19. P.M. Farrell, W.R. MacGillivray, M.C. Standage, Phys. Rev. A 44, 1828–1835 (1991)

    Article  ADS  Google Scholar 

  20. C.S. Feigerle, R.N. Compton, L.E. Cuéllar, N.A. Cherepkov, L.V. Chernysheva, Phys. Rev. A 53, 4183–4189 (1996)

    Article  ADS  Google Scholar 

  21. V.V. Flambaum, V.A. Dzuba, A. Derevianko, Phys. Rev. Lett. 101, 220801(1)–220801(4) (2008)

    Google Scholar 

  22. R. Forbes, V. Makhija, A. Stolow, I. Wilkinson, P. Hocketty, R. Lausten, Phys. Rev. A 97, 063417(1)–063417(11) (2018)

    Google Scholar 

  23. M. Göppert-Mayer, Phys. Rev. 78, 16–21 (1950)

    Article  ADS  Google Scholar 

  24. A.N. Grum-Grzhimailo, S. Fritzsche, P. O’Keeffe, M. Meyer, J. Phys. B 38, 2545–2553 (2005)

    Article  ADS  Google Scholar 

  25. A.N. Grum-Grzhimailo, E.V. Gryzlova, Chapter New Trends in Complete Experiment on Atomic Photoionization (in this book)

    Google Scholar 

  26. E.V. Gryzlova, P. O’Keeffe, D. Cubaynes, G.A. Garcia, L. Nahon, A.N. Grum-Grzhimailo, M. Meyer, New J. Phys. 17, 043054(1)–043054(15) (2015)

    Article  ADS  Google Scholar 

  27. E. Hack, J.R. Huber, Int. Rev. Phys. Chem. 10, 287–317 (1991)

    Article  Google Scholar 

  28. T. Hadeishi, W.A. Nierenberg, Phys. Rev. Lett. 14, 891–892 (1965)

    Article  ADS  Google Scholar 

  29. S. Haroche, J.A. Paisner, A.L. Schawlow, Phys. Rev. Lett. 30, 948–951 (1973)

    Article  ADS  Google Scholar 

  30. J.R. Henderson, P. Beiersdorfer, C.L. Bennett et al., Phys. Rev. Lett. 65, 705–708 (1990)

    Article  ADS  Google Scholar 

  31. D. Huff, W.V. Houston, Phys. Rev. 36, 842–846 (1930)

    Article  ADS  Google Scholar 

  32. N.M. Kabachnik, I.P. Sazhina, J. Phys. B 9, 1681–1697 (1976)

    Article  ADS  Google Scholar 

  33. A. Kupliauskiene, N. Rak\(\check{\rm {s}}\)tikas, V. Tutlys, J. Phys. B 34, 1783–1803 (2001)

    Google Scholar 

  34. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd edn (Pergamon, London, 1977)

    Google Scholar 

  35. R. Luypaert, J. Van Craen, J. Phys. B 10, 3627–3636 (1977)

    Article  ADS  Google Scholar 

  36. J.J. McClelland, M.H. Kelley, Phys. Rev. A 31, 3704–3710 (1985)

    Article  ADS  Google Scholar 

  37. M. Meyer, B. Müller, A. Nunnemann, Th. Prescher, E.V. Raven, M. Richter, M. Schmidt, B. Sonntag, P. Zimmermann, Phys. Rev. Lett. 59, 2963–2966 (1987)

    Article  ADS  Google Scholar 

  38. M. Meyer, M. Gisselbrecht, A. Marquette, C. Delisle, M. Larzillière, I.D. Petrov, N.V. Demekhina, V.L. Sukhorukov, J. Phys. B 38, 285–295 (2005)

    Article  ADS  Google Scholar 

  39. S. Mrozowski, Phys. Rev. 57, 207–211 (1940)

    Article  ADS  Google Scholar 

  40. O.C. Mullins, R.-L. Chien, J.E. Hunter III, J.S. Keller, R.S. Berry, Phys. Rev. A 31, 321–328 (1985)

    Article  ADS  Google Scholar 

  41. L. Nahon, N. de Oliveira, G.A. Garcia, J.-F. Gil, B. Pilette, O. Marcouillé, B. Lagarde, F. Polack, J. Synchrotron Radiat. 19, 508–520 (2012)

    Article  Google Scholar 

  42. D.E. Nikonov, U.W. Rathe, M.O. Scully, S.-Y. Zhu, E.S. Fry, X. Li, G.G. Padmabandu, M. Fleischhauer, Quantum Opt. 6, 245–260 (1994)

    Article  ADS  Google Scholar 

  43. P. O’Keeffe, S. Aloïse, S. Fritzsche, B. Lohmann, U. Kleiman, M. Meyer, A.N. Grum-Grzhimailo, Phys. Rev. A 70, 012705(1)–012705(14) (2004)

    Google Scholar 

  44. P. O’Keeffe, E.V. Gryzlova, D. Cubaynes, G.A. Garcia, L. Nahon, A.N. Grum-Grzhimailo, M. Meyer, Phys. Rev. Lett. 111, 243002(1)–243002(5) (2013)

    Google Scholar 

  45. K.L. Reid, S.P. Duxon, M. Towrie, Chem. Phys. Lett. 228, 351–356 (1994)

    Article  ADS  Google Scholar 

  46. N. Saquet, D.M.P. Holland, S.T. Pratt, D. Cubaynes, X. Tang, G.A. Garcia, L. Nahon, K.L. Reid, Phys. Rev. A 93, 033419(1)–033419(11) (2016)

    Google Scholar 

  47. A.L. Schawlow, C.H. Townes, Phys. Rev. 112, 1940–1949 (1958)

    Article  ADS  Google Scholar 

  48. J.H. Scofield, J. Nilsen, Phys. Rev. A 49, 2381–2388 (1994)

    Article  ADS  Google Scholar 

  49. A. Siegel, J. Ganz, W. Bußert, H. Hotop, J. Phys. B 16, 2945–2959 (1983)

    Article  ADS  Google Scholar 

  50. V. Sukhorukov, I. Petrov, M. Schäfer, F. Merkt, M.-W. Ruf, H. Hotop, J. Phys. B 45, 092001(1)–092001(43) (2012)

    Google Scholar 

  51. J.R. Tolsma, D.J. Haxton, C.H. Greene, R. Yamazaki, D.S. Elliott, Phys. Rev. A 80, 033401(1)–033401(9) (2009)

    Google Scholar 

  52. E. Träbert, P. Beiersdorfer, G.V. Brown, Phys. Rev. Lett. 98, 263001(1)–263001(4) (2007)

    Google Scholar 

  53. W.A. van Wijngaarden, J. Sagle, J. Phys. B 24, 897–903 (1991)

    Article  ADS  Google Scholar 

  54. F. Wuilleumier, M. Meyer, J. Phys. B 39, R425–R477 (2006)

    Article  ADS  Google Scholar 

  55. R.P. Wood, C.H. Greene, D. Armstrong, Phys. Rev. A 47, 229–235 (1993)

    Article  ADS  Google Scholar 

  56. Z.W. Wu, A. Surzhykov, S. Fritzsche, Phys. Rev. A 89, 022513(1)–022513(7) (2014)

    Google Scholar 

  57. H. Xu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, Phys. Rev. A 96, (R)041401(1)–041401(6) (2017)

    Google Scholar 

  58. J. von Zanthier, T. Becker, M. Eichenseer et al., Opt. Lett. 25, 1729–1731 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors highly appreciate the team of experimentalists, D. Cubaynes, G. A. Garcia, M. Meyer, L. Nahon and P. O’Keeffe, whose inspiration measurements initiated our theoretical study. We are grateful to kind hospitality of the French synchrotron SOLEIL and the European XFEL. EVG acknowledges financial support from the Basis foundation via the Junior Leader program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Gryzlova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gryzlova, E.V., Grum-Grzhimailo, A.N. (2019). Effects of Hyperfine Interaction in Atomic Photoionization. In: Yamanouchi, K., Tunik, S., Makarov, V. (eds) Progress in Photon Science. Springer Series in Chemical Physics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-05974-3_12

Download citation

Publish with us

Policies and ethics