Skip to main content

Standard Vibration Analysis Methods

  • Chapter
  • First Online:
Vibration-Based Condition Monitoring of Wind Turbines

Part of the book series: Applied Condition Monitoring ((ACM,volume 14))

Abstract

The following chapter presents the summary of signal processing methods used in vibration based condition monitoring. It starts with the examples of signals which are then used to demonstrate all the analyses. First, simple simulated signals are described. Then, more complex features are added until real vibration signals are presented and described. The Fourier Transform is used to obtain the frequency spectrum of a signal. It is a fundamental vibration analysis tool. This transform is presented in details covering continuous and discrete signals. There are factors, like leakage, windowing and digitization which have important influence on its results and they are also covered. A powerful and popular method for rolling element bearing fault detection is the envelope analysis which is presented next. Signal examples are used and the importance of a proper selection of a demodulation band is described. Since modern wind turbines work with varying rotational speed, resampling is very important to decrease this type of non-stationarity. It is also described. Next two methods are: time synchronous analysis as it is important for gear fault detection, and time-frequency method used for non-stationary states. The chapter is concluded with a presentation of broadband and narrowband features used for tracking individual drivetrain components and with description of standards applicable to wind turbines. The special importance is a new part of ISO 10816-21 devoted to onshore turbines with gearboxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Randall RB (1987) Frequency analysis. Bruel & Kjaer, Naerum

    Google Scholar 

  2. Shin K, Hammond JK (2008) Fundamentals of signal processing for sound and vibration engineers. Wiley, Chichester

    Google Scholar 

  3. Braun S (2008) Discover signal processing: an interactive guide for engineers. Wiley Chichester

    Google Scholar 

  4. Klein U (2003) Schwingungsdiagnostische Beurteilung von Maschinen und Anlagen. Stahleisen Verlag, Duesseldorf (Vibrodiagnostic assessment of machines and devices, in German)

    Google Scholar 

  5. Jardine AK, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition based maintenance. Mech Syst Sig Process 20(7):1483–1510

    Article  Google Scholar 

  6. Siegel D, Zhao W, Lapira E, Abuali M, Lee J (2014) A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains. Wind Energ 17:695–714

    Article  Google Scholar 

  7. Darlow MS, Badgley RH, Hogg GW (1974) Application of high-frequency resonance techniques for bearing diagnostics in helicopter gearboxes. Mechanical Technology Inc., Latham

    Google Scholar 

  8. Randall RB, Antoni J, Chobsaard S (2001) The relationship between spectral correlation and envelope analysis for cyclostationary machine signals. Application to ball bearing diagnostics. Mech Syst Sig Process 15(5):945–962

    Article  Google Scholar 

  9. Antoni J (2007) Cyclic spectral analysis of rolling-element bearing signals: facts and fictions. J Sound Vib 304:497–529

    Article  Google Scholar 

  10. Antoni J (2009) Cyclostationarity by examples. Mech Syst Sig Process 23(4):987–1036

    Article  Google Scholar 

  11. Ho D, Randall RB (2000) Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mech Syst Sig Process 14(5):763–788

    Article  Google Scholar 

  12. Randall RB, Antoni J (2011) Rolling element bearing diagnostics—A tutorial. Mech Syst Sig Process 25(2):485–520

    Article  Google Scholar 

  13. Barszcz T, Jablonski A (2010) Selected methods of finding optimal center frequency for amplitude demodulation of vibration signals. Diagnostyka 2:25–28

    Google Scholar 

  14. Bartelmus W, Zimroz R (2006) Optymalny zakres częstotliwości w procedurze demodulacji amplitudy w zastosowaniu do uszkodzeń lokalnych. Diagnostyka (Optimal frequency range for amplitude demodulation for local fault detection, in Polish) 1(37):141–150

    Google Scholar 

  15. Barszcz T, Jablonski A (2011) A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram. Mech Syst Sig Process 25(1):431–451

    Article  Google Scholar 

  16. Stearns S (1996) Signal processing algorithms in Matlab. Prentice Hall Inc/

    Google Scholar 

  17. McFadden PD (1989) Interpolation techniques for time domain averaging of gear vibration. Mech Syst Sig Process 3:87–97

    Article  Google Scholar 

  18. Wang W, Ismail F, Golnaraghi MF (2001) Assessment of gear damage monitoring techniques using vibration measurements. Mech Syst Sig Process 15:905–922

    Article  Google Scholar 

  19. Wang W (2001) Early detection of gear tooth cracking using the resonance demodulation technique. Mech Syst Sig Process 15:887–903

    Article  Google Scholar 

  20. Wang WJ, McFadden PD (1995) Decomposition of gear motion signals and its application to gearbox diagnostics. J Vib Acoust 117:363–369

    Article  Google Scholar 

  21. McFadden PD, Smith JD (1985) A signal processing technique for detecting local defects in a gear from the signal average of the vibration. P I Mech Eng 199:287–292

    Article  Google Scholar 

  22. Barszcz T, Randall RB (2009) Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mech Syst Sig Process 23:1352–1365

    Article  Google Scholar 

  23. Flandrin P (1998) Time-frequency/Time-scale analysis. Academic Press

    Google Scholar 

  24. Gellermann T, Walter G (2003) Anforderungen an Condition Monitoring Systeme für Windenergieanlagen. Allianz Zentrum fur Technik

    Google Scholar 

  25. Germanischer Lloyd WindEnergie GmbH (2003) Richtlinie für die Zertifizierung von Condition Monitoring Systemen für Windenergieanlagen

    Google Scholar 

  26. Germanischer Lloyd WindEnergie GmbH (2007) Richtlinie für die Zertifizierung von Condition Monitoring Systemen für Windenergieanlagen

    Google Scholar 

  27. Germanischer Lloyd WindEnergie GmbH (2013) Richtlinie für die Zertifizierung von Condition Monitoring Systemen für Windenergieanlagen

    Google Scholar 

  28. Vereins Deutscher Ingenieure (2009) VDI 3834-1:2009-03. Measurement and evaluation of the mechanical vibration of wind energy turbines and their components—Onshore wind energy turbines with gears. Verlag des Vereins Deutscher Ingenieure

    Google Scholar 

  29. Vereins Deutscher Ingenieure (2015) VDI 3834-1:2015-08. Measurement and evaluation of the mechanical vibration of wind energy turbines and their components—Onshore wind energy turbines with gears. Verlag des Vereins Deutscher Ingenieure

    Google Scholar 

  30. International Standard Organization (2015) ISO 10816-21:2015. Mechanical vibration—Evaluation of machine vibration by measurements on nonrotating parts—Part 21: Horizontal axis wind turbines with gearbox

    Google Scholar 

  31. Fischer K, Coronado D (2015) Condition monitoring of wind turbines: state of the art, user experience and recommendations. VGB PowerTech 7:51–56

    Google Scholar 

  32. National Renewable Energy Laboratory (2015) Gearbox reliability collaborative research. https://www.nrel.gov/wind/grc-research.html Accessed on 20 Mar 2018

  33. International Standard Organization (1998) ISO 10817-1:1998. Rotating shaft vibration measuring systems—Part 1: Relative and absolute sensing of radial vibration

    Google Scholar 

  34. Antoni J (2007) Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing 21 (1):108–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Barszcz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barszcz, T. (2019). Standard Vibration Analysis Methods. In: Vibration-Based Condition Monitoring of Wind Turbines. Applied Condition Monitoring, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-05971-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05971-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05969-9

  • Online ISBN: 978-3-030-05971-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics