Skip to main content

Dependency of Microstructure and Inclusions on the Different Growth Rate for Directionally Solidified Non-quenched and Tempered Steel

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Using a Bridgman directional solidification furnace, the solidification experiments of a non-quenched and tempered steel were directionally conducted at a temperature ingredient with various growth rates (v = 10–300 μm/s). The values of the dendrite arm spacing and mean diameter of MnS (dMnS) inclusions in the steady uni-solidification zone were measured. Based on these results, dMnS is more directly related to the secondary dendrite arm spacing (λ2) than the primary one. Besides, the values of dMnS and λ2 decrease with increasing growth rate . The relationship between λ2 and dMnS with growth rate was determined by linear regression analysis. Therefore, λ2 = 472.06 v−0.375, dMnS = 4.45 v−0.125, and the linear fitting exponent values obtained in this work were nearly same with the previous data in similar systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oikawa K, Ohtani H, Ishida K, Nishizawa T (1995) The control of the morphology of MnS inclusions in steel during solidification. ISIJ Int 35(4):402–408

    Article  Google Scholar 

  2. Kim HS, Lee HG, Oh KS (2002) Evolution of size, composition, and morphology of primary and secondary inclusions in Si/Mn and Si/Mn/Ti deoxidized steels. ISIJ Int 42(12):1404–1411

    Article  CAS  Google Scholar 

  3. Liu JH, Su XF, Liu HB, Han ZB, He Y, Qiu ST (2017) Solidification interface transformation and solute redistribution of FeCrAl stainless stee. Metall Res Technol 114(4):409

    Article  Google Scholar 

  4. Madariaga I, Gutiérrez I (1999) Role of the particle–matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel. Acta Mater 47(3):951–960

    Article  CAS  Google Scholar 

  5. Xiao GH, Dong H, Wang MQ, Hui WJ (2011) Effect of sulfur content and sulfide shape on fracture ductility in case hardening steel. J Iron Steel Res Int 18(8):58–64

    Article  CAS  Google Scholar 

  6. Liu L, Huang TW, Qu M, Liu G, Zhang J, Fu HZ (2010) High thermal gradient directional solidification and its application in the processing of nickel-based superalloys. J Mater Process Technol 210(1):159–165

    Article  CAS  Google Scholar 

  7. Zhong HG, Cao X, Chen XR, Zhang JY, Zhai QJ (2013) Numerical and experimental investigation of solidification structure in horizontal directional solidification process of Al-Cu alloy. Chin J Nonferrous Met 10:2792–2799 (in Chinese)

    Google Scholar 

  8. Bai L, Wang B, Zhong HG, Ni J, Zhai QJ, Zhang JY (2016) Experimental and numerical simulations of the solidification process in continuous casting of Sla. Met Open Access Metall J 6(3):53

    Google Scholar 

  9. Zhong HG, Chen XR, Ma YZ, Ou L, Li RX, Zhai QJ (2013) A method for simulated horizontal growth process of solidification microstructure.

    Google Scholar 

  10. Imagumbai M, Takeda T (1994) Influence of calcium-treatment on sulfide—and oxide-inclusions in continuous-cast slab of clean steel-dendrite structure and inclusions. ISIJ Int 34(7):574–583

    Article  CAS  Google Scholar 

  11. Taha MA (1986) Influence of solidification parameters on dendrite arm spacings in low carbon steels. J Mater Sci Lett 5(3):307–310

    Article  CAS  Google Scholar 

  12. Taha MA, Jacobi H, Imagumbai M, Schwerdtfeger K (1982) Dendrite morphology of several steady state unidirectionally solidified iron base alloys. Metall Trans A 13(12):2131–2141

    Article  CAS  Google Scholar 

  13. Janis D, Inoue R, Karasev A, Jönsson P (2014) Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys. Adv Mater Sci Eng 2014(2):1–7

    Article  Google Scholar 

  14. Kurz W, Fisher DJ (1989) Fundamentals of solidification. Trans Tech Publications, p 71–92

    Google Scholar 

  15. Xia YJ, Wang FM, Li CR, Wang JL, Wu ZY (2012) Study on the formation behavior of sulfides in free-cutting steel by unidirectional solidification. J Univ Sci Technol Beijing 34(2):118–124 (in Chinese)

    CAS  Google Scholar 

  16. Li X, Gagnoud A, Fautrelle Y, Ren ZM, Moreau R, Zhang YD (2012) Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Mater 60(8):3321–3332

    Article  CAS  Google Scholar 

  17. Young KP, Kerkwood DH (1975) The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions. Metall Trans A 6(1):197–205

    Article  CAS  Google Scholar 

  18. Jacobi H, Schwerdtfeger K (1976) Dendrite morphology of steady state unidirectionally solidified steel. Metall Trans A 7(6):811–820

    Article  Google Scholar 

  19. Bertelli F, Brito C, Ferreira IL, Reinhart G, Nguyen-Thi H, Mangelinck N, Cheung N, Garcia A (2015) Cooling thermal parameters, microstructure, segregation and hardness in directionally solidified Al–Sn-(Si;Cu) alloys. Mater Des 72:31–42

    Article  CAS  Google Scholar 

  20. Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R (2002) FactSage thermochemical software and databases. Calphad 26(2):189–228

    Article  CAS  Google Scholar 

  21. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K (2009) FactSage thermochemical software and databases—recent developments. Calphad 33(2):295–311

    Article  CAS  Google Scholar 

  22. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE (2016) Reprint of: factsage thermochemical software and databases, 2010-2016. Calpha 55:1–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Program of China (2018YFB0704400), and the National Natural Science Foundation of China (Grant numbers: 51671124, 51474142)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Xie, J., Zhong, H., Zhai, Q., Fu, J. (2019). Dependency of Microstructure and Inclusions on the Different Growth Rate for Directionally Solidified Non-quenched and Tempered Steel. In: Jiang, T., et al. 10th International Symposium on High-Temperature Metallurgical Processing. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05955-2_26

Download citation

Publish with us

Policies and ethics