Dependency of Microstructure and Inclusions on the Different Growth Rate for Directionally Solidified Non-quenched and Tempered Steel

  • Hui Liu
  • Jianbo Xie
  • Honggang Zhong
  • Qijie Zhai
  • Jianxun FuEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Using a Bridgman directional solidification furnace, the solidification experiments of a non-quenched and tempered steel were directionally conducted at a temperature ingredient with various growth rates (v = 10–300 μm/s). The values of the dendrite arm spacing and mean diameter of MnS (dMnS) inclusions in the steady uni-solidification zone were measured. Based on these results, dMnS is more directly related to the secondary dendrite arm spacing (λ2) than the primary one. Besides, the values of dMnS and λ2 decrease with increasing growth rate. The relationship between λ2 and dMnS with growth rate was determined by linear regression analysis. Therefore, λ2 = 472.06 v−0.375, dMnS = 4.45 v−0.125, and the linear fitting exponent values obtained in this work were nearly same with the previous data in similar systems.


Directional solidification Dendrite MnS Growth rate 



This work is supported by National Key Research and Development Program of China (2018YFB0704400), and the National Natural Science Foundation of China (Grant numbers: 51671124, 51474142)


  1. 1.
    Oikawa K, Ohtani H, Ishida K, Nishizawa T (1995) The control of the morphology of MnS inclusions in steel during solidification. ISIJ Int 35(4):402–408CrossRefGoogle Scholar
  2. 2.
    Kim HS, Lee HG, Oh KS (2002) Evolution of size, composition, and morphology of primary and secondary inclusions in Si/Mn and Si/Mn/Ti deoxidized steels. ISIJ Int 42(12):1404–1411CrossRefGoogle Scholar
  3. 3.
    Liu JH, Su XF, Liu HB, Han ZB, He Y, Qiu ST (2017) Solidification interface transformation and solute redistribution of FeCrAl stainless stee. Metall Res Technol 114(4):409CrossRefGoogle Scholar
  4. 4.
    Madariaga I, Gutiérrez I (1999) Role of the particle–matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel. Acta Mater 47(3):951–960CrossRefGoogle Scholar
  5. 5.
    Xiao GH, Dong H, Wang MQ, Hui WJ (2011) Effect of sulfur content and sulfide shape on fracture ductility in case hardening steel. J Iron Steel Res Int 18(8):58–64CrossRefGoogle Scholar
  6. 6.
    Liu L, Huang TW, Qu M, Liu G, Zhang J, Fu HZ (2010) High thermal gradient directional solidification and its application in the processing of nickel-based superalloys. J Mater Process Technol 210(1):159–165CrossRefGoogle Scholar
  7. 7.
    Zhong HG, Cao X, Chen XR, Zhang JY, Zhai QJ (2013) Numerical and experimental investigation of solidification structure in horizontal directional solidification process of Al-Cu alloy. Chin J Nonferrous Met 10:2792–2799 (in Chinese)Google Scholar
  8. 8.
    Bai L, Wang B, Zhong HG, Ni J, Zhai QJ, Zhang JY (2016) Experimental and numerical simulations of the solidification process in continuous casting of Sla. Met Open Access Metall J 6(3):53Google Scholar
  9. 9.
    Zhong HG, Chen XR, Ma YZ, Ou L, Li RX, Zhai QJ (2013) A method for simulated horizontal growth process of solidification microstructure.Google Scholar
  10. 10.
    Imagumbai M, Takeda T (1994) Influence of calcium-treatment on sulfide—and oxide-inclusions in continuous-cast slab of clean steel-dendrite structure and inclusions. ISIJ Int 34(7):574–583CrossRefGoogle Scholar
  11. 11.
    Taha MA (1986) Influence of solidification parameters on dendrite arm spacings in low carbon steels. J Mater Sci Lett 5(3):307–310CrossRefGoogle Scholar
  12. 12.
    Taha MA, Jacobi H, Imagumbai M, Schwerdtfeger K (1982) Dendrite morphology of several steady state unidirectionally solidified iron base alloys. Metall Trans A 13(12):2131–2141CrossRefGoogle Scholar
  13. 13.
    Janis D, Inoue R, Karasev A, Jönsson P (2014) Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys. Adv Mater Sci Eng 2014(2):1–7CrossRefGoogle Scholar
  14. 14.
    Kurz W, Fisher DJ (1989) Fundamentals of solidification. Trans Tech Publications, p 71–92Google Scholar
  15. 15.
    Xia YJ, Wang FM, Li CR, Wang JL, Wu ZY (2012) Study on the formation behavior of sulfides in free-cutting steel by unidirectional solidification. J Univ Sci Technol Beijing 34(2):118–124 (in Chinese)Google Scholar
  16. 16.
    Li X, Gagnoud A, Fautrelle Y, Ren ZM, Moreau R, Zhang YD (2012) Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Mater 60(8):3321–3332CrossRefGoogle Scholar
  17. 17.
    Young KP, Kerkwood DH (1975) The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions. Metall Trans A 6(1):197–205CrossRefGoogle Scholar
  18. 18.
    Jacobi H, Schwerdtfeger K (1976) Dendrite morphology of steady state unidirectionally solidified steel. Metall Trans A 7(6):811–820CrossRefGoogle Scholar
  19. 19.
    Bertelli F, Brito C, Ferreira IL, Reinhart G, Nguyen-Thi H, Mangelinck N, Cheung N, Garcia A (2015) Cooling thermal parameters, microstructure, segregation and hardness in directionally solidified Al–Sn-(Si;Cu) alloys. Mater Des 72:31–42CrossRefGoogle Scholar
  20. 20.
    Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R (2002) FactSage thermochemical software and databases. Calphad 26(2):189–228CrossRefGoogle Scholar
  21. 21.
    Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K (2009) FactSage thermochemical software and databases—recent developments. Calphad 33(2):295–311CrossRefGoogle Scholar
  22. 22.
    Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE (2016) Reprint of: factsage thermochemical software and databases, 2010-2016. Calpha 55:1–19CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hui Liu
    • 1
  • Jianbo Xie
    • 1
  • Honggang Zhong
    • 1
    • 2
  • Qijie Zhai
    • 1
    • 2
  • Jianxun Fu
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Advanced Special SteelShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations