Skip to main content

Basic Principles of Heat Pipes and History

  • Chapter
  • First Online:
Book cover Heat Pipe Applications in Fission Driven Nuclear Power Plants
  • 828 Accesses

Abstract

The heat pipe is one of the remarkable achievements of thermal physics and heat transfer engineering in this century because of its unique ability to transfer heat over large distances without considerable losses. The main applications of heat pipes deal with the problems of environmental protection and energy and fuel savings. Heat pipes have emerged as an effective and established thermal solution, particularly in high heat flux applications and in situations where there is any combination of nonuniform heat loading, limited airflow over the heat-generating components, and space or weight constraints. This chapter will briefly introduce heat pipe technology and then highlight its basic applications as a passive thermal control device [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zohuri, B. (2016). Heat pipe design and technology: Modern applications for practical thermal management (2nd ed.). New York: Springer.

    Book  Google Scholar 

  2. Gaugler, R. S. (1944, June 6). Heat transfer device. U.S. Patent 2, 350, 348.

    Google Scholar 

  3. Trefethen, L. (1962, February). On the surface tension pumping of liquids or a possible role of the candlewick in space exploration (G. E. Tech. Info., Ser. No. 615 D114).

    Google Scholar 

  4. Wyatt, T. Wyatt (Johns Hopkins/Applied Physics Lab.). Satellite Temperature Stabilization System. Early development of spacecraft heat pipes for temperature stabilization. U.S. Patent No. 3,152,774 (October 13, 1964), application was files June 11, 1963.

    Google Scholar 

  5. Grove, G. M., Cotter, T. P., & Erikson, G. F. (1964). Structures of very high thermal conductivity. Journal of Applied Physics, 35, 1990.

    Article  Google Scholar 

  6. Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.

    Google Scholar 

  7. Dunn, P. D., & Reay, D. A. (1982). Heat pipes (3rd ed.). New York: Pergamon.

    Google Scholar 

  8. Marcus, B. D. (1971, July). Theory and design of variable conductance heat pipes: Control techniques (Research Report No. 2). NASA 13111-6027-R0-00.

    Google Scholar 

  9. Bennett, G. A. (1977, September 1). Conceptual design of a heat pipe radiator. LA-6939-MS Technical Report. Los Alamos Scientific Lab., NM, USA.

    Google Scholar 

  10. Gerasimov, Y. F., Maidanik, Y. F., & Schegolev, G. T. (1975). Low-temperature heat pipes with separated channels for vapor and liquid. Engineering Physics Journal, 28(6), 957–960. (in Russian).

    Article  Google Scholar 

  11. Watanabe, K., Kimura, A., Kawabata, K., Yanagida, T., & Yamauchi, M. (2001). Development of a variable-conductance heat-pipe for a sodium-sulfur (NAS) battery. Furukawa Review, No. 20.

    Google Scholar 

  12. Peterson, G. P. (1994). An introduction to heat pipes: Modeling, testing, and applications (pp. 175–210). New York: Wiley.

    Google Scholar 

  13. Garner, S. D., P. E., Thermacore Inc.

    Google Scholar 

  14. Brennan, P. J., & Kroliczek, E. J. (1979). Heat pipe design handbook. Towson, MD: B & K Engineering.

    Google Scholar 

  15. Kemme, J. E. (1969, August 1). Heat pipe design considerations. Los Alamos Scientific Laboratory report LA-4221-MS.

    Google Scholar 

  16. MIL-STD-1522A (USAF). (1984, May). Military standard general requirements for safe design and operation of pressurized missile and space systems.

    Google Scholar 

  17. Woloshun, K. A., Merrigan, M. A., & Best, E. D. HTPIPE: A steady-state heat pipe analysis program: A user’s manual.

    Google Scholar 

  18. Faghri, A. Temperature regulation system for the human body using heat pipes. US patent 5269369.

    Google Scholar 

  19. Grover, G. M., Cotter, T. P., & Erickson, G. F. (1964). Structures of very high thermal conductance. Journal of Applied Physics, 35(6), 1990–1991.

    Article  Google Scholar 

  20. Ranken, W. A., & Kemme, J. E. (1965). Survey of Los Alamos and EURATOM heat pipe investigations. In Proceedings of the IEEE Thermionic Conversion Specialist Conference, San Diego, California, October 1965. Los Alamos Scientific Laboratory, report LA-DC-7555.

    Google Scholar 

  21. Kernme, J. E. (1966). Heat pipe capability experiments. In Proceedings of Joint AEC Sandia Laboratories report SC-M-66-623, 1, October 1966. Expanded version of this paper, Los Alamos Scientific Laboratory report LA-3585-MS (August 1966), also as LA-DC-7938. Revised version of LA-3583-MS, Proc. EEE Thermionic Conversion Specialist Conference, Houston, Texas, (November 1966).

    Google Scholar 

  22. Grover, G. M., Bohdansky, J., & Busse, C. A. (1965). The use of a new heat removal system in space thermionic power supplies. European Atomic Energy Community—EURATOM report EUR 2229.e.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zohuri, B. (2019). Basic Principles of Heat Pipes and History. In: Heat Pipe Applications in Fission Driven Nuclear Power Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-05882-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05882-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05881-4

  • Online ISBN: 978-3-030-05882-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics