Skip to main content

Introduction to Compressive Sampling (CS)

  • Chapter
  • First Online:

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter provides an overview of compressive sampling (CS), introducing both the signal acquisition and reconstruction protocols. A novel, computationally light, overlapped window reconstruction algorithm is introduced to circumvent the problem of edge artifacts in conventional CS reconstruction. The proposed approach is shown to reduce the central processing unit (CPU) execution time by a factor of 2.4 without degradation of reconstruction accuracy compared to a traditional longer window reconstruction approach for photoplethysmogram (PPG) signals. Finally, this chapter also presents the state-of-the-art CS implementations for biosignal acquisition and processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Strictly speaking restricted isometry property (RIP) of Φ Ψ−1.

  2. 2.

    This is true for analog implementations of CS. Digital implementations acquire signal at Nyquist rate (f s,N).

  3. 3.

    For perfect reconstruction, X′ = X and S′ = S.

  4. 4.

    In analog implementations of CS, only M samples are acquired.

  5. 5.

    Assuming Bernoulli measurement matrix.

  6. 6.

    The overlapping window overlaps the original window by 50%.

  7. 7.

    Random sampling is equivalent to multiplying the signal with a reduced order identity matrix.

References

  1. E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  2. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  3. G.B. Moody, R.G. Mark, MIT-BIH arrhythmia database (1992) [Online]. Available: https://www.physionet.org/physiobank/database/mitdb/

  4. H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)

    Article  Google Scholar 

  5. D. Gangopadhyay, E.G. Allstot, A.M.R. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)

    Article  Google Scholar 

  6. Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)

    Article  Google Scholar 

  7. C. Weltin-Wu, Y. Tsividis, An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid State Circuits 48(9), 2180–2190 (2013)

    Article  Google Scholar 

  8. B. Schell, Y. Tsividis, A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE J. Solid State Circuits 43(11), 2472–2481 (2008)

    Article  Google Scholar 

  9. M. Trakimas, S.R. Sonkusale, An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2011)

    Article  MathSciNet  Google Scholar 

  10. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  11. D.L. Donoho, Y. Tsaig, Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)

    Article  Google Scholar 

  12. E. Candes, J. Romberg, l1-magic: recovery of sparse signals via convex programming, vol. 4, p. 14 (2005). http://www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

  13. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. (1996), pp. 267–288

    MathSciNet  MATH  Google Scholar 

  14. W. Lu, N. Vaswani, Modified basis pursuit denoising(modified-BPDN) for noisy compressive sensing with partially known support, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010), pp. 3926–3929

    Book  Google Scholar 

  15. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1(4), 586–597 (2007)

    Article  Google Scholar 

  16. A.M.R. Dixon, E.G. Allstot, D. Gangopadhyay, D.J. Allstot, Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)

    Article  Google Scholar 

  17. F. Ren, D. Marković, 18.5 A configurable 12-to-237kS/s 12.8 mW sparse-approximation engine for mobile ExG data aggregation, in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (IEEE, Piscataway, 2015), pp. 1–3

    Google Scholar 

  18. P. Maechler, C. Studer, D.E. Bellasi, A. Maleki, A. Burg, N. Felber, H. Kaeslin, R.G. Baraniuk, VLSI design of approximate message passing for signal restoration and compressive sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 579–590 (2012)

    Article  Google Scholar 

  19. P. Maechler, P. Greisen, B. Sporrer, S. Steiner, N. Felber, A. Burg, Implementation of greedy algorithms for LTE sparse channel estimation, in 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (Nov 2010)

    Google Scholar 

  20. V.R. Pamula, M. Verhelst, C. Van Hoof, R.F. Yazicioglu, Computationally-efficient compressive sampling for low-power pulseoximeter system, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings (IEEE, Piscataway, 2014), pp. 69–72

    Google Scholar 

  21. V.R. Pamula, System and method for compressed sensing, U.S. Patent App. 14/886,537, 21 Apr 2016

    Google Scholar 

  22. M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. Regul. Pap. 59(5), 1001–1014 (2012)

    Article  MathSciNet  Google Scholar 

  23. S. Mallet, A Wavelet Tour of Signal Processing (Academic Press, Cambridge, 2009)

    Google Scholar 

  24. H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 493–501 (2012)

    Article  Google Scholar 

  25. M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)

    Article  Google Scholar 

  26. F. Chen, A.P. Chandrakasan, V.M. Stojanovic, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)

    Article  Google Scholar 

  27. Y. Suo, J. Zhang, T. Xiong, P.S. Chin, R. Etienne-Cummings, T.D. Tran, Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(5), 648–659 (2014)

    Article  Google Scholar 

  28. W. Guo, N. Sun, A 9.8b-ENOB 5.5fj/step fully-passive compressive sensing SAR ADC for WSN applications, in 2016 46th European Solid-State Device Research Conference (ESSDERC) (Sep 2016)

    Google Scholar 

  29. P.V. Rajesh, J.M. Valero-Sarmiento, L. Yan, A. Bozkurt, C. Van Hoof, N. Van Helleputte, R.F. Yazicioglu, M. Verhelst, A 172μW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2016), pp. 386–387

    Google Scholar 

  30. M. Trakimas, R. D’Angelo, S. Aeron, T. Hancock, S. Sonkusale, A compressed sensing analog-to-information converter with edge-triggered SAR ADC core. IEEE Trans. Circuits Syst. I, Reg. Pap. 60(5), 1135–1148 (2013)

    Article  MathSciNet  Google Scholar 

  31. M. Lustig, D. Donoho, J.M. Pauly, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  32. T. Moy, L. Huang, W. Rieutort-Louis, C. Wu, P. Cuff, S. Wagner, J.C. Sturm, N. Verma, An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics. IEEE J. Solid State Circuits 52(1), 309–321 (2017)

    Article  Google Scholar 

  33. B. Hu, F. Ren, Z.-Z. Chen, X. Jiang, M.-C. Chang, 9-bit time–digital-converter-assisted compressive-sensing analogue–digital-converter with 4 GS/s equivalent speed. Electron. Lett. 52(6), 430–432 (2016)

    Article  Google Scholar 

  34. D.E. Bellasi, L. Benini, Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. Reg. Pap. 62(11), 2718–2729 (2015)

    Article  MathSciNet  Google Scholar 

  35. D. Bortolotti, A. Bartolini, L. Benini, V.R. Pamula, N. Van Helleputte, C. Van Hoof, M. Verhelst, T. Gemmeke, R.B. Lopez, G. Ansaloni et al., PHIDIAS: ultra-low-power holistic design for smart bio-signals computing platforms, in Proceedings of the ACM International Conference on Computing Frontiers (ACM, New York, 2016), pp. 309–314

    Google Scholar 

  36. J. Zhang, Y. Suo, S. Mitra, S.P. Chin, S. Hsiao, R.F. Yazicioglu, T.D. Tran, R. Etienne-Cummings, An efficient and compact compressed sensing microsystem for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(4), 485–496 (2014)

    Article  Google Scholar 

  37. P.K. Baheti, H. Garudadri, S. Majumdar, Blood oxygen estimation from compressively sensed photoplethysmograph, in Wireless Health 2010, ser. WH ’10 (ACM, New York, 2010), pp. 10–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pamula, V.R., Van Hoof, C., Verhelst, M. (2019). Introduction to Compressive Sampling (CS). In: Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-05870-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05870-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05869-2

  • Online ISBN: 978-3-030-05870-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics