Earthquake Simulation on Urban Areas: Improving Contingency Plans by Damage Assessment

  • Gregorio D’Agostino
  • Antonio Di PietroEmail author
  • Sonia Giovinazzi
  • Luigi La Porta
  • Maurizio Pollino
  • Vittorio Rosato
  • Alberto Tofani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11260)


Crisis produced by earthquake events are often dramatic for their severity and their impact on population. Damages may extend from buildings to Critical Infrastructures. Predicting the functionality of the latter after an event is relevant for the design of contingency plans, as availability of primary services empowers the action of first responders in the aftermath management. This work deploys a complex earthquake simulator (CIPCast-ES) which allows to explore a realistic earthquake event occurring in the city of Florence (Italy) by predicting disruptions on buildings and Critical Infrastructure and by designing a reliable scenario, accounting for roads obstruction due to building collapse, to be used to design an efficient contingency plan.


Earthquake simulation Collapsed buildings Roads 


  1. 1.
    Palano, M.: On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italy. Geophys. J. Int. 200(2), 969–985 (2015). Scholar
  2. 2.
    Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P. (eds.) CPTI15, The 2015 Version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia (2016).
  3. 3.
    Allen, T.I., Wald, D.J., Worden, C.B.: Intensity attenuation for active crustal regions. J. Seismol. 16, 409–433 (2012)CrossRefGoogle Scholar
  4. 4.
    Argyroudis, S., Selva, J., Gehl, P., Pitilakis, K.: Systemic seismic risk assessment of road networks considering interactions with the built environment. Comput. Aided Civ. Infrastruct. Eng. 30, 524–540 (2015)CrossRefGoogle Scholar
  5. 5.
    INGV National Earthquake Centre.
  6. 6.
    Di Pietro, A., Lavalle, L., La Porta, L., Pollino, M., Tofani, A., Rosato, V.: Design of DSS for supporting preparedness to and management of anomalous situations in complex scenarios. In: Setola, R., Rosato, V., Kyriakides, E., Rome, E. (eds.) Managing the Complexity of Critical Infrastructures. SSDC, vol. 90, pp. 195–232. Springer, Cham (2016). Scholar
  7. 7.
    Giovinazzi, S., Di Pietro, A., Mei, M., Pollino, M., Rosato, V.: Protection of critical infrastructure in the event of earthquakes: CIPCast-ES. In: L’Ingegneria sismica in Italia - ANIDIS 2017 - XVII Convegno (2017)Google Scholar
  8. 8.
    Giovinazzi, S., et al.: Towards a decision support tool for assessing, managing and mitigating seismic risk of electric power networks. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 399–414. Springer, Cham (2017). Scholar
  9. 9.
    Grunthal, G.: European Macroseismic Scale 1998 (EMS-98). Centre Européen de Géodynamique et de Séismologie, Luxembourg. (Cahiers du Centre Européen de Géodynamique et de Séismologie n. 15)Google Scholar
  10. 10.
    Lammer, S., Gehlsen, B., Helbing, D.: Scaling laws in the spatial structure of urban road networks. Phys. A Stat. Mech. Appl. 363(1), 89–95 (2006). ISSN 0378–4371CrossRefGoogle Scholar
  11. 11.
    Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a dual approach. Phys. A Stat. Mech. Appl. 369(2), 853–866 (2006). ISSN 0378–4371CrossRefzbMATHGoogle Scholar
  12. 12.
    Harr, M.E.: Reliability-Based Design in Civil Engineering. McGraw-Hill, New York (1987)Google Scholar
  13. 13.
    Matassoni, L., Giovinazzi, S., Pollino, M., Fiaschi, A., La Porta, L., Rosato, V.: A geospatial decision support tool for seismic risk management: florence (Italy) case study. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 278–293. Springer, Cham (2017). Scholar
  14. 14.
    McGuire, R.K.: Deterministic vs. probabilistic earthquake hazards and risks. Soil Dyn. Earthq. Eng. 21, 377–384 (2001)CrossRefGoogle Scholar
  15. 15.
    Musson, R., Grunthal, G., Stucchi, M.: The comparison of macroseismic intensity scales. J. Seism. 14(2), 413–428 (2010). Scholar
  16. 16.
    Pitilakis, K., Crowley, H., Kaynia, A.M. (eds.): SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk. GGEE, vol. 27. Springer, Dordrecht (2014). ISBN 978-94-007-7872-6CrossRefGoogle Scholar
  17. 17.
    Pitilakis, K., Franchin, P., Khazai, B., Wenzel, H. (eds.): SYNER-G: Systemic Seismic Vulnerability and Risk Assessment of Complex Urban, Utility, Lifeline Systems and Critical Facilities. GGEE, vol. 31. Springer, Dordrecht (2014). ISBN 978-94-017-8834-2CrossRefGoogle Scholar
  18. 18.
    Kongar, I., Giovinazzi, S.: Damage to infrastructure: modeling. In: Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, I.S.K. (eds.) Encyclopedia of Earthquake Engineering, pp. 1–14. Springer, Heidelberg (2014). Scholar
  19. 19.
    Mak, S., Clements, R.A., Schorlemmer, D.: Validating intensity prediction equations for Italy by observations. Bull. Seism. Soc. Am. 105, 2942–2954 (2015)CrossRefGoogle Scholar
  20. 20.
    Mak, S., Schorlemmer, D.: Erratum to validating intensity prediction equations for Italy by observations. Bull. Seism. Soc. Am. 106, 823 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gregorio D’Agostino
    • 1
  • Antonio Di Pietro
    • 1
    Email author
  • Sonia Giovinazzi
    • 2
    • 3
    • 4
  • Luigi La Porta
    • 1
  • Maurizio Pollino
    • 1
  • Vittorio Rosato
    • 1
  • Alberto Tofani
    • 1
  1. 1.ENEA Laboratory for the Analysis and Protection of Critical Infrastructures (APIC)RomeItaly
  2. 2.Sapienza University of RomeRomeItaly
  3. 3.University of CanterburyChristchurchNew Zealand
  4. 4.INGV Istituto Nazionale di Geofisica e VulcanologiaRomeItaly

Personalised recommendations