Skip to main content

Abstract

Recent developments in the design of advanced materials have furthered interest in the commercialization of new technologies. So the increased production of nanomaterials has increased concerns about their effects on human and environmental health. The evidence for health risks of nanoparticles has been demonstrated over the last decade, yet it is unclear if metal nanoparticles cause effects directly or indirectly. This chapter gives a brief review on the toxicology pathways, recommendations and methods for screening hazard testing of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol. 2005;1(1):47–53.

    Article  CAS  Google Scholar 

  • Assa F, Jafarizadeh-Malmiri H, Anarjan N, Berenjian A, Ghasemi Y. Applications of chitosan nanoparticles in active biodegradable and sustainable food packaging. In: Kale SA, Durai PRT, Prabakar K, editors. Renewable energy and sustainable development. Hauppauge: Nova Science Publishers; 2015.

    Google Scholar 

  • Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology. 2009;3(2):161–71.

    Article  CAS  Google Scholar 

  • Bailey M, Roy M. Annexe E. clearance of particles from the respiratory tract. Ann ICRP. 1994;24(1–3):301–413.

    Article  Google Scholar 

  • Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM. Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect. 2007;115(11):1654.

    Article  Google Scholar 

  • Beyerle A, Schulz H, Kissel T, Stoeger T. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: the use of a-quartz and nano zinc oxide particles as benchmark. J Phys Conf. Ser. 2009;151:012034: IOP Publishing

    Article  Google Scholar 

  • Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol. 2012;2012:293784.

    Article  Google Scholar 

  • Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521–31.

    Article  CAS  Google Scholar 

  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3(1):11.

    Article  Google Scholar 

  • Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC. Air pollution and cardiovascular disease. Circulation. 2004;109(21):2655–71.

    Article  Google Scholar 

  • Buxton DB, Lee SC, Wickline SA, Ferrari M. Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group. Circulation. 2003;108(22):2737–42.

    Article  Google Scholar 

  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71.

    Article  Google Scholar 

  • Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect. 2004;112(8):879.

    Article  CAS  Google Scholar 

  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133.

    Article  Google Scholar 

  • Donaldson K, Tran CL. Inflammation caused by particles and fibers. Inhal Toxicol. 2002;14(1):5–27.

    Article  CAS  Google Scholar 

  • Driscoll KE, Carter JM, Borm PJ. Antioxidant defense mechanisms and the toxicity of fibrous and nonfibrous particles. Inhal Toxicol. 2002;14(1):101–18.

    Article  CAS  Google Scholar 

  • Drobne D, Jemec A, Tkalec ŽP. In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut. 2009;157(4):1157–64.

    Article  CAS  Google Scholar 

  • Fadel TR, Steevens JA, Thomas TA, Linkov I. The challenges of nanotechnology risk management. Nano Today. 2015;10(1):6–10.

    Article  CAS  Google Scholar 

  • Forbe T, García M, Gonzalez E. Potential risks of nanoparticles. Food Sci Technol (Campinas). 2011;31(4):835–42.

    Article  Google Scholar 

  • Foss Hansen S, Larsen BH, Olsen SI, Baun A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology. 2007;1(3):243–50.

    Article  Google Scholar 

  • Garcia-Reyero N, Kennedy AJ, Escalon BL, Habib T, Laird JG, Rawat A, Wiseman S, Hecker M, Denslow N, Steevens JA. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ Sci Technol. 2014;48(8):4546–55.

    Article  CAS  Google Scholar 

  • Gehr P, Heyder J. Particle-lung interactions. Boca Raton: CRC Press; 2000.

    Book  Google Scholar 

  • Guadagnini R, Moreau K, Hussain S, Marano F, Boland S. Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology. 2015;9(suppl 1):25–32.

    Article  CAS  Google Scholar 

  • Gurr J-R, Wang AS, Chen C-H, Jan K-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1):66–73.

    Article  CAS  Google Scholar 

  • Howard J. Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. DHHS (NIOSH) Publication. 2013;2013:145.

    Google Scholar 

  • Hristozov D, Malsch I. Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability. 2009;1(4):1161–94.

    Article  CAS  Google Scholar 

  • Kavlock R, Dix D. Computational toxicology as implemented by the US EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. J Toxicol Environ Health B Crit Rev. 2010;13(2–4):197–217.

    Article  CAS  Google Scholar 

  • Khan FH. Chemical hazards of nanoparticles to human and environment (a review). Orient J Chem. 2014;29(4):1399–408.

    Article  Google Scholar 

  • Kreyling WG, Semmler M, Möller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17(2):140–52.

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Chaudhry Q. A complementary definition of nanomaterial. Nano Today. 2010;5(3):165–8.

    Article  Google Scholar 

  • Lee JW, Won E-J, Raisuddin S, Lee J-S. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J Environ Sci. 2015;35:115–27.

    Article  CAS  Google Scholar 

  • Leite PEC, Pereira MR, Granjeiro JM. Hazard effects of nanoparticles in central nervous system: searching for biocompatible nanomaterials for drug delivery. Toxicol In Vitro. 2015;29(7):1653–60.

    Article  CAS  Google Scholar 

  • Liu Y, Tourbin M, Lachaize S, Guiraud P. Nanoparticles in wastewaters: hazards, fate and remediation. Powder Technol. 2014;255:149–56.

    Article  CAS  Google Scholar 

  • Masciangioli T, Zhang W-X. Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol. 2003;37:102A–8A. ACS Publications

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V. Safe handling of nanotechnology. Nature. 2006;444(7117):267–9.

    Article  CAS  Google Scholar 

  • Menzel F, Reinert T, Vogt J, Butz T. Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instrum Methods Phys Res B. 2004;219:82–6.

    Article  Google Scholar 

  • Mills NL, Törnqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, Boon NA, Donaldson K, Blomberg A, Sandstrom T. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112(25):3930–6.

    Article  CAS  Google Scholar 

  • Nel A. Air pollution-related illness: effects of particles. Science. 2005;308(5723):804–6.

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

    Article  CAS  Google Scholar 

  • Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010;267(1):89–105.

    Article  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005a;2(1):8.

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005b;113(7):823.

    Article  Google Scholar 

  • Reeves JF, Davies SJ, Dodd NJ, Jha AN. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res. 2008;640(1):113–22.

    Article  CAS  Google Scholar 

  • Reijnders L. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod. 2006;14(2):124–33.

    Article  Google Scholar 

  • Roco MC. National nanotechnology initiative-past, present, future. In: Goddard WA, et al., editors. Handbook on nanoscience, engineering and technology. Boca Raton and London: CRC, Taylor and Francis; 2007. 3.1–3.

    Google Scholar 

  • Royal Society and Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties. London: Royal Society and Royal Academy of Engineering; 2004.

    Google Scholar 

  • Salata OV. Applications of nanoparticles in biology and medici. J Nanobiotechnology. 2004;2(1):3.

    Article  Google Scholar 

  • Schmidt CW. Nanotechnology-related environment, health, and safety research: examining the national strategy. Environ Health Perspect. 2009;117(4):A158.

    Article  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L698–708.

    Article  CAS  Google Scholar 

  • Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra) cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 2015;115(5):2109–35.

    Article  CAS  Google Scholar 

  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P. Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev. 2003;55(4):519–48.

    Article  CAS  Google Scholar 

  • Warheit DB. Nanoparticles: health impacts? Mater Today. 2004;7(2):32–5.

    Article  CAS  Google Scholar 

  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007;171(3):99–110.

    Article  CAS  Google Scholar 

  • Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther. 2008;120(1):35–42.

    Article  CAS  Google Scholar 

  • Wiesner M, Bottero J-Y. Environmental nanotechnology. New York: McGraw-Hill Professional Publishing; 2007.

    Google Scholar 

  • Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere. 2010;78(3):209–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jafarizadeh-Malmiri, H., Sayyar, Z., Anarjan, N., Berenjian, A. (2019). Potential Hazards of Nanoparticles. In: Nanobiotechnology in Food: Concepts, Applications and Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-030-05846-3_8

Download citation

Publish with us

Policies and ethics