Skip to main content

Improving Graph-Based Tractography Plausibility Using Microstructure Information

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Abstract

Tractography is a unique tool to study neurological disorders for its ability to infer the major neural tracts from diffusion MRI data, thus allowing the investigation of the connectivity of the brain in-vivo. Tractography has seen a remarkable interest over the years and a large number of algorithms have been proposed. The choice of which method to use in a given application is usually a trade-off between its computational complexity and the quality of the reconstructions. So-called “shortest path” methods represent an interesting option, as they are computationally efficient, robust to noise and their formulation is very flexible. However, they also come with limitations. For instance, the reconstructed streamlines tend to be collapsed and to share part of their path, especially in regions with highly curved fiber bundles. This can introduce voxels with incorrectly high or low streamline density, which does not correspond to the underlying fiber geometry. To mitigate this problem, we propose an iterative procedure that uses microstructure information and provides feedback to the shortest path tractography algorithm about the plausibility of the reconstructions. We evaluated our method on a synthetic phantom and show that the spatial distribution of streamlines is in closer agreement with the ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastiani, M., Shah, N.J., Goebel, R., Roebroeck, A.: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage 62(3), 1732–1749 (2012)

    Article  Google Scholar 

  2. Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.c., Thiran, J.p., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: International Symposium on Magnetic Resonance in Medicine (ISMRM 2014)). Milan, Italy (2014)

    Google Scholar 

  3. Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A.: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet. Neurol. 7(8), 715–727 (2008)

    Article  Google Scholar 

  4. Cieslak, M., Brennan, T., Meiring, W., Volz, L.J., Greene, C., Asturias, A., Suri, S., Grafton, S.T.: Analytic tractography: a closed-form solution for estimating local white matter connectivity with diffusion MRI. NeuroImage 169, 473–484 (2018)

    Article  Google Scholar 

  5. Daducci, A., Dal Palù, A., Lemkaddem, A., Thiran, J.P.: COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34(1), 246–257 (2015)

    Article  Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  7. Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.F., Poupon, C.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56(1), 220–234 (jan 2011)

    Article  Google Scholar 

  8. Iturria-Medina, Y., Canales-Rodríguez, E., Melie-García, L., Valdés-Hernández, P., Martínez-Montes, E., Alemán-Gómez, Y., Sánchez-Bornot, J.: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage (jul, 2007) (2008)

    Google Scholar 

  9. Jbabdi, S., Bellec, P., Toro, R., Daunizeau, J., Plgrini-Issac, M., Benali, H.: Accurate anisotropic fast marching for diffusion-based geodesic tractograph. Int. J. Biomed. Imaging (2008)

    Google Scholar 

  10. Jeurissen, B., Descoteaux, M., Mori, S., Leemans, A.: Diffusion MRI fiber tractography of the brain. NMR Biomed., e3785 (2017)

    Google Scholar 

  11. Mori, S., Crain, B.J., Chacko, V.P., Van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)

    Article  Google Scholar 

  12. Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans. Med. Imaging 21(5), 505–512 (2002)

    Article  Google Scholar 

  13. Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)

    Article  Google Scholar 

  14. Zalesky, A.: DT-MRI fiber tracking: a shortest paths approach. IEEE Trans. Med. Imaging 27(10), 1458–1471 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Battocchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Battocchio, M. et al. (2019). Improving Graph-Based Tractography Plausibility Using Microstructure Information. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_29

Download citation

Publish with us

Policies and ethics