Skip to main content

Inference of an Extended Short Fiber Bundle Atlas Using Sulcus-Based Constraints for a Diffeomorphic Inter-subject Alignment

  • Conference paper
  • First Online:
Book cover Computational Diffusion MRI (MICCAI 2019)

Abstract

We present a new framework for the creation of an extended atlas of short fiber bundles between 20 and 80 mm length. This method uses a Diffeomorphic inter-subject alignment procedure including information of cortical foldings and forces the accurate match of the sulci that have to be circumvented by the U-bundles. Then, a clustering is performed to extract the most reproducible bundles across subjects. First results show an increased number of U-bundles consistently mapped in the general population compared with previous atlases created from the same database. Future analysis over this new extended Brain atlas may improve our understanding of the relationship between the folding pattern and the U-bundle variability. The ultimate aim will be the possibility to detect abnormal configurations induced by developmental issues.

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 785907 (HBP SGA2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner, J., et al.: A fast diffeomorphic image registration algorithm. Neuroimage 38(95), 113 (2007)

    Google Scholar 

  2. Assaf, Y., et al.: The CONNECT project: combining macro- and micro-structure. Neuroimage 80, 273–282 (2013)

    Article  Google Scholar 

  3. Auzias, G., et al.: Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE Trans. Med. Imaging 30(6), 1214–1227 (2011)

    Article  Google Scholar 

  4. Brainvisa Homepage. http://brainvisa.info/web/index.html. Last accessed 6 July 2018

  5. Cointepas, Y., et al.: BrainVISA: software platform for visualization and analysis of multi-modality brain data. In: OHBM. Presented at the OHBM, Brighton (2001)

    Article  Google Scholar 

  6. Dubois, J., et al.: Correction strategy for diffusion-weighted images corrupted with motion: application to the DTI evaluation of infants white matter. Magn. Reson. Imaging 32(8), 981–992 (2014)

    Article  Google Scholar 

  7. Duclap, D., et al.: Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA. In: 29th ESMRMB, Lisbonne, Portugal (2012)

    Google Scholar 

  8. Descoteaux, M., et al.: Regularized, fast and robust analytical Q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  9. Ester, M., et al.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining KDD 1996, Portland, Oregon, pp. 226–231 (1996)

    Google Scholar 

  10. Fischer, C., et al.: Morphologist 2012: the new morphological pipeline of BrainVISA. In: OHBM. Presented at the OHBM, Beijing, China (2012)

    Google Scholar 

  11. Guevara, P., et al.: Robust clustering of massive tractography datasets. Neuroimage 54(3), 1975–1993 (2011)

    Article  Google Scholar 

  12. Guevara, P., et al.: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Neuroimage 61(4), 1083–1099 (2012)

    Article  MathSciNet  Google Scholar 

  13. Guevara, M., et al.: Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography. Neuroimage 147, 703–725 (2017)

    Article  Google Scholar 

  14. Lebenberg, J., et al.: A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem (2018)

    Google Scholar 

  15. Mangin, J.-F., et al.: A framework to study the cortical folding patterns. Neuroimage 23(1), 129–138 (2004)

    Article  Google Scholar 

  16. Mazziotta, J., et al.: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. Ser. B 356, 1293–1322 (2001)

    Article  Google Scholar 

  17. O’Donnell, L., et al.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26(11), 1562–1575 (2007)

    Article  Google Scholar 

  18. Roman, C., et al.: Clustering of whole brain white matter short association bundles using HARDI data. Front. Neuroinformatics 11, 73 (2017)

    Google Scholar 

  19. Zhang, F., et al.: Whole brain white matter connectivity analysis using machine learning: an application to autism. Neuroimage 172, 826–837 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Labra Avila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avila, N.L. et al. (2019). Inference of an Extended Short Fiber Bundle Atlas Using Sulcus-Based Constraints for a Diffeomorphic Inter-subject Alignment. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_25

Download citation

Publish with us

Policies and ethics