Skip to main content

Spherical Harmonic Residual Network for Diffusion Signal Harmonization

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Abstract

Diffusion imaging is an important method in the field of neuroscience, as it is sensitive to changes within the tissue microstructure of the human brain. However, a major challenge when using MRI to derive quantitative measures is that the use of different scanners, as used in multi-site group studies, introduces measurement variability. This can lead to an increased variance in quantitative metrics, even if the same brain is scanned. Contrary to the assumption that these characteristics are comparable and similar, small changes in these values are observed in many clinical studies, hence harmonization of the signals is essential. In this paper, we present a method that does not require additional preprocessing, such as segmentation or registration, and harmonizes the signal based on a deep learningresidual network. For this purpose, a training database is required, which consist of the same subjects, scanned on different scanners. The results show that harmonized signals are significantly more similar to the ground truth signal compared to no harmonization, but also improve in comparison to another deep learning method. The same effect is also demonstrated in commonly used metrics derived from the diffusion MRI signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)

    Article  Google Scholar 

  2. Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)

    Article  Google Scholar 

  3. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  4. Fortin, J.P., Parker, D., Tunç, B., Watanabe, T., Elliott, M.A., Ruparel, K., Roalf, D.R., Satterthwaite, T.D., Gur, R.C., Gur, R.E., Schultz, R.T., Verma, R., Shinohara, R.T.: Harmonization of multi-site diffusion tensor imaging data. NeuroImage 161, 149–170 (2017). http://www.sciencedirect.com/science/article/pii/S1053811917306948

    Article  Google Scholar 

  5. Golkov, V., Dosovitskiy, A., Sperl, J.I., Menzel, M.I., Czisch, M., Sämann, P., Brox, T., Cremers, D.: q-space deep learning for twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. NeuroImage 62(2), 782–790 (2012). http://www.sciencedirect.com/science/article/pii/S1053811911010603, 20 YEARS OF fMRI

    Article  Google Scholar 

  8. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  9. Koppers, S., Haarburger, C., Merhof, D.: Diffusion MRI signal augmentation: from single shell to multi shell with deep learning. In: CDMRI, pp. 61–70. Springer (2016)

    Google Scholar 

  10. Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Karmacharya, S., Grant, G., Marx, C.E., Morey, R.A., Flashman, L.A., George, M.S., McAllister, T.W., Andaluz, N., Shutter, L., Coimbra, R., Zafonte, R.D., Coleman, M.J., Kubicki, M., Westin, C.F., Stein, M.B., Shenton, M.E., Rathi, Y.: Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging Behav. 12(1), 284–295 (2018). https://doi.org/10.1007/s11682-016-9670-y

    Article  Google Scholar 

  11. Mirzaalian, H., de Pierrefeu, A., Savadjiev, P., Pasternak, O., Bouix, S., Kubicki, M., Westin, C.F., Shenton, M.E., Rathi, Y.: Harmonizing diffusion MRI data across multiple sites and scanners. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 12–19. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  12. Tax, M.W., C., Grussu, F., Kaden, E., Ning, L., Rudrapatna, U., Evans, J., St-Jean, S., Leemans, A., Puch, S., Rowe, M., Rodrigues, P., Prĉkovska, V., Koppers, S., Merhof, D., Ghosh, A., Tanno, R., C Alexander, D., Charron, C., Kusmia, S., EJ Linden, D., K Jones, D., Veraart, J.: Cross-vendor and cross-protocol harmonisation of diffusion tensor imaging data: a comparative study. ISMRM-ESMRMB (2018). https://projects.iq.harvard.edu/cdmri2017

  13. Vollmar, C., Identical et al.: But not the same: Intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners. Neuroimage 51(4), 1384–1394 (2010)

    Article  Google Scholar 

  14. Zhang, Y., et al.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the 2017 computational dMRI challenge organizers (Francesco Grussu, Enrico Kaden, Lipeng Ning and Jelle Veraart) for help with data acquisition and processing, as well as Derek Jones, Umesh Rudrapatna, John Evans, Slawomir Kusmia, Cyril Charron, and David Linden at CUBRIC, Cardiff University, and Fabrizio Fasano at Siemens for their support with data acquisition.

This work was supported by a Rubicon grant from the NWO (680-50-1527), a Wellcome Trust Investigator Award (096646/Z/11/Z), and a Wellcome Trust Strategic Award (104943/Z/14/Z). The data were acquired at the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure funded by the EPSRC (grant EP/M029778/1), and The Wolfson Foundation. This work was supported by the International Research Training Group 2150 of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Koppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koppers, S., Bloy, L., Berman, J.I., Tax, C.M.W., Edgar, J.C., Merhof, D. (2019). Spherical Harmonic Residual Network for Diffusion Signal Harmonization. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_14

Download citation

Publish with us

Policies and ethics