Skip to main content

Nanotube/Biopolymer Nanocomposites

  • Chapter
  • First Online:
Bio-based Polymers and Nanocomposites

Abstract

Nanotubes are one of the most important classes of 1D nanomaterial which can be used as reinforcing filler for the polymers and biopolymers. Out of several organic/inorganic nanotubes, carbon nanotubes (CNTs) and halloysite nanotubes (HNTs) were most studied due to their high aspect ratio, outstanding mechanical and thermal properties. Nanotubes have potential to increase the physical properties of the biopolymer even at very low loading. The properties of nanotube-filled nanocomposite depend on various parameters like the aspect ratio, dispersion, and interaction between filler and polymer. To improve the utilization and maximum potential of these fillers, it is important to understand the mechanisms of reinforcement. It will help the future researchers to find out the limitations and issues with existent processing method of nanotube-based nanocomposite which is required for further improvement. In this regard, this chapter will help the researchers to fully understand the current progress in processing method, issues, and possible methods to prepare an ideal nanotube and biopolymer-based nanocomposites. This chapter will discuss only biopolymer-based nanocomposites filled by the two most important 1D tubular nanofillers, which are CNT and HNT. This study has been divided into three subtopics, namely (i) thermoplastic nanocomposites, (ii) thermoset nanocomposites, and (iii) natural rubber (NR) nanocomposites. It focuses on the fabrication processes, properties, and potential applications of CNT and HNT biopolymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam A, Shubhra QT, Al-Imran G et al (2011) Preparation and characterization of natural silk fiber-reinforced polypropylene and synthetic E-glass fiber-reinforced polypropylene composites: a comparative study. J Compos Mater 45(22):2301–2308

    Article  Google Scholar 

  • Alam AM, Beg M, Yunus R et al (2016) Evolution of functionalized multi-walled carbon nanotubes by dendritic polymer coating and their anti-scavenging behavior during curing process. Mater Lett 167:58–60

    Article  Google Scholar 

  • Alam A, Beg M, Yunus R (2017) Microstructure and fractography of multiwalled carbon nanotube reinforced unsaturated polyester nanocomposites. Polym Compos 38(S1):E462–E471

    Article  Google Scholar 

  • Albdiry M, Yousif B (2014) Role of silanized halloysite nanotubes on structural, mechanical properties and fracture toughness of thermoset nanocomposites. Mater Des 57:279–288

    Article  Google Scholar 

  • Alhuthali A, Low IM (2013a) Mechanical and fracture properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Appl Polym Sci 130(3):1716–1725

    Article  Google Scholar 

  • Alhuthali A, Low IM (2013b) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48(12):4260–4273

    Article  Google Scholar 

  • Anand KA, Jose TS, Alex R et al (2009) Natural rubber-carbon nanotube composites through latex compounding. Int J Polym Mater 59(1):33–44

    Article  Google Scholar 

  • Ausman KD, Piner R, Lourie O et al (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915

    Article  Google Scholar 

  • Banerjee S, Mohapatra SK, Das PP et al (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20(21):6784–6791

    Article  Google Scholar 

  • Baochun G, Yanda L, Quanliang Z et al (2009) Structure and properties of natural rubber/halloysite nanotubes composites prepared by latex-suspension coagulation. Chin Synth Rubber Ind 32(2):131–134

    Google Scholar 

  • Bartolucci SF, Supan KE, Wiggins JS et al (2013) Thermal stability of polypropylene-clay nanocomposites subjected to laser pulse heating. Polym Degrad Stab 98(12):2497–2502

    Article  Google Scholar 

  • Baskaran D, Mays JW, Bratcher MS (2004) Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem Int Ed 43(16):2138–2142

    Article  Google Scholar 

  • Beg M, Alam AM, Yunus R et al (2015) Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin. J Nanopart Res 17(1):53

    Article  Google Scholar 

  • Berahman R, Raiati M, Mazidi MM et al (2016) Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: effect of matrix hardness and HNT content. Mater Des 104:333–345

    Article  Google Scholar 

  • Bethune D, Kiang CH, De Vries M et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605

    Article  Google Scholar 

  • Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920

    Article  Google Scholar 

  • Bourbigot S, Fontaine G, Gallos A et al (2011) Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym Adv Technol 22(1):30–37

    Article  Google Scholar 

  • Breton Y, Desarmot G, Salvetat J et al (2004) Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 42(5–6):1027–1030

    Article  Google Scholar 

  • Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35(7):637–659

    Article  Google Scholar 

  • Cadek M, Murphy R, McCarthy B et al (2002) Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon 40(6):923–928

    Article  Google Scholar 

  • Chen RJ, Zhang Y, Wang D et al (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839

    Article  Google Scholar 

  • Chen X, Zhang Z, Qiu Z et al (2007) Hydrothermal fabrication and characterization of polycrystalline linneite (Co3S4) nanotubes based on the Kirkendall effect. J Colloid Interface Sci 308(1):271–275

    Article  Google Scholar 

  • Coleman JN, Khan U, Blau WJ et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652

    Article  Google Scholar 

  • Desa M, Zaidi MS, Hassan A et al (2016) Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.44344

  • Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891

    Article  Google Scholar 

  • Fang YP, Xu AW, You LP et al (2003) Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. Adv Funct Mater 13(12):955–960

    Article  Google Scholar 

  • Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63(11):1647–1654

    Article  Google Scholar 

  • Gaaz TS, Sulong AB, Kadhum AAH et al (2017) The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules. https://doi.org/10.3390/molecules22050838

    Article  Google Scholar 

  • George N, Bipinbal P, Bhadran B et al (2017) Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: a novel technique for multifunctional properties. Polymer 112:264–277

    Article  Google Scholar 

  • Girifalco L, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104

    Article  Google Scholar 

  • Gkikas G, Barkoula NM, Paipetis A (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos Part B Eng 43(6):2697–2705

    Article  Google Scholar 

  • Gorrasi G (2015) Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym 127:47–53

    Article  Google Scholar 

  • Gryshchuk O, Karger-Kocsis J, Thomann R et al (2006) Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Compos Part A Appl Sci Manuf 37(9):1252–1259

    Article  Google Scholar 

  • Guimaraes L, Enyashin AN, Seifert G et al (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114(26):11358–11363

    Article  Google Scholar 

  • Hilding J, Grulke EA, Zhang ZG et al (2003) Dispersion of carbon nanotubes in liquids. J Dispersion Sci Technol 24(1):1–41

    Article  Google Scholar 

  • Hill DE, Lin Y, Rao AM et al (2002) Functionalization of carbon nanotubes with polystyrene. Macromolecules 35(25):9466–9471

    Article  Google Scholar 

  • Hwee E, Tanaka Y (1993) Structure of natural rubber. Trends Polym Sci 3:493–513

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Iijima S (1993) Growth of carbon nanotubes. Mater Sci Eng B 19(1–2):172–180

    Article  Google Scholar 

  • Iijima S (2002) Carbon nanotubes: past, present, and future. Phys Rev B Condens Matter 323(1–4):1–5

    Google Scholar 

  • Ismail H, Chia H (1998) The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds. Eur Polym J 34(12):1857–1863

    Article  Google Scholar 

  • Ismail H, Freakley P (1996) Determination of the modes of action of a cationic surfactant for property development in silica-filled natural rubber compounds. Eur Polym J 32(4):411–416

    Article  Google Scholar 

  • Ismail H, Pasbakhsh P, Fauzi MA et al (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27(7):841–850

    Article  Google Scholar 

  • Ismail H, Ramly F, Othman N (2010) Multiwall carbon nanotube-filled natural rubber: the effects of filler loading and mixing method. Polym Plast Technol Eng 49(3):260–266

    Article  Google Scholar 

  • Jia Z, Guo B, Jia D (2014) Advances in rubber/halloysite nanotubes nanocomposites. J Nanosci Nanotechnol 14(2):1758–1771

    Article  Google Scholar 

  • Job A, Oliveira F, Alves N et al (2003) Conductive composites of natural rubber and carbon black for pressure sensors. Synth Met 135:99–100

    Article  Google Scholar 

  • Joly S, Garnaud G, Ollitrault R et al (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14(10):4202–4208

    Article  Google Scholar 

  • Kanagaraj S, Varanda FR, Zhil’tsova TV et al (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077

    Article  Google Scholar 

  • Kausar A (2018) Review on polymer/halloysite nanotube nanocomposite. Polym Plast Technol Eng 57(6):548–564

    Article  Google Scholar 

  • Kim Y, Hayashi T, Fukai Y et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355(3–4):279–284

    Article  Google Scholar 

  • Kim MG, Moon JB, Kim CG (2012a) Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos Part A Appl Sci Manuf 43(9):1620–1627

    Article  Google Scholar 

  • Kim SW, Kim T, Kim YS et al (2012b) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1):3–33

    Article  Google Scholar 

  • Ko S, Hong M, Park B et al (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63(1):125–134

    Article  Google Scholar 

  • Kokai F, Koshio A, Shiraishi M et al (2005) Modification of carbon nanotubes by laser ablation. Diamond Relat Mater 14(3–7):724–728

    Article  Google Scholar 

  • Kota AK, Cipriano BH, Duesterberg MK et al (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40(20):7400–7406

    Article  Google Scholar 

  • Krishnaiah P, Ratnam CT, Manickam S (2017) Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci 135:583–595

    Article  Google Scholar 

  • Kroto H, Heath J, O’Brien S et al (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  • Kuan CF, Chen CH, Kuan HC et al (2008a) Multi-walled carbon nanotube reinforced poly(l-lactic acid) nanocomposites enhanced by water-crosslinking reaction. J Phys Chem Solids 69(5–6):1399–1402

    Article  Google Scholar 

  • Kuan CF, Kuan HC, Ma CCM et al (2008b) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69(5–6):1395–1398

    Article  Google Scholar 

  • Kulkarni M, Charhate N, Bhavsar K et al (2013) Development of polyaniline-multiwalled carbon nanotube (PANI-MWCNT) nanocomposite for optical pH sensor. Mater Res Innovations 17(4):238–243

    Article  Google Scholar 

  • Lau KT (2003) Interfacial bonding characteristics of nanotube/polymer composites. Chem Phys Lett 370(3–4):399–405

    Article  Google Scholar 

  • Lau KT, Chipara M, Ling HY et al (2004) On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Compos Part B Eng 35(2):95–101

    Article  Google Scholar 

  • Lau KT, Lu M, Lam CK et al (2005) Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci Technol 65(5):719–725

    Article  Google Scholar 

  • Le H, Oßwald K, Wießner S et al (2013) Location of dispersing agent in rubber nanocomposites during mixing process. Polymer 54(26):7009–7021

    Article  Google Scholar 

  • Lecouvet B, Bourbigot S, Sclavons M et al (2012) Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polym Degrad Stab 97(9):1745–1754

    Article  Google Scholar 

  • Lee RS, Chen WH, Lin JH (2011) Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer 52(10):2180–2188

    Article  Google Scholar 

  • Li J, Ma PC, Chow WS et al (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215

    Article  Google Scholar 

  • Li Q, Church JS, Kafi A et al (2014) An improved understanding of the dispersion of multi-walled carbon nanotubes in non- aqueous solvents. J Nanopart Res. https://doi.org/10.1007/s11051-014-2513-0

  • Liu CX, Choi JW (2012) Improved dispersion of carbon nanotubes in polymers at high concentrations. Nanomaterials 2(4):329–347

    Article  Google Scholar 

  • Liu T, Phang IY, Shen L et al (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(19):7214–7222

    Article  Google Scholar 

  • Liu M, Guo B, Du M et al (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer 50(13):3022–3030

    Article  Google Scholar 

  • Liu M, Jia Z, Jia D et al (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525

    Article  Google Scholar 

  • Lou X, Detrembleur C, Sciannamea V et al (2004) Grafting of alkoxyamine end-capped (co) polymers onto multi-walled carbon nanotubes. Polymer 45(18):6097–6102

    Article  Google Scholar 

  • Ma PC, Tang BZ, Kim JK (2008) Conversion of semiconducting behavior of carbon nanotubes using ball milling. Chem Phys Lett 458(1–3):166–169

    Article  Google Scholar 

  • Ma PC, Wang SQ, Kim JK et al (2009) In-situ amino functionalization of carbon nanotubes using ball milling. J Nanosci Nanotechnol 9(2):749–753

    Article  Google Scholar 

  • Ma PC, Siddiqui NA, Marom G et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41(10):1345–1367

    Article  Google Scholar 

  • Marney D, Russell L, Wu D et al (2008) The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab 93(10):1971–1978

    Article  Google Scholar 

  • Mat Desa M, Hassan A, Arsad A et al (2014) Mechanical properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites. Mater Res Innovations 18(6):S6-14–S16-17

    Article  Google Scholar 

  • McNally T, Pötschke P, Halley P et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46(19):8222–8232

    Article  Google Scholar 

  • Meira SMM, Zehetmeyer G, Werner JO et al (2017) A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll 63:561–570

    Article  Google Scholar 

  • Mina MF, Shohrawardy M, Khan MA et al (2013) Improved mechanical performances of triple super phosphate treated jute-fabric reinforced polypropylene composites irradiated by gamma rays. J Appl Polym Sci 130(1):470–478

    Article  Google Scholar 

  • Mina M, Beg M, Islam M et al (2014) Structures and properties of injection-molded biodegradable poly(lactic acid) nanocomposites prepared with untreated and treated multiwalled carbon nanotubes. Polym Eng Sci 54(2):317–326

    Article  Google Scholar 

  • Modesti M, Besco S, Lorenzetti A (2009) Effect of processing conditions on the morphology and properties of polymer nanocomposites. In: Mittal V (ed) Optimization of polymer nanocomposite properties, 1st edn. Wiley-VCH, Germany, pp 369–405

    Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  Google Scholar 

  • Monti M, Puglia D, Natali M et al (2011) Effect of carbon nanofibers on the cure kinetics of unsaturated polyester resin: thermal and chemorheological modelling. Compos Sci Technol 71(12):1507–1516

    Google Scholar 

  • Moon SI, Jin F, Lee CJ et al (2005) Novel carbon nanotube/poly(l-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp 224(1):287–296

    Article  Google Scholar 

  • Niu H, Gao M (2006) Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer. Angew Chem Int Ed 45(39):6462–6466

    Article  Google Scholar 

  • Niyogi S, Hamon M, Hu H et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  • Novoselov K, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102(30):10451–10453

    Article  Google Scholar 

  • Offringa AR (1996) Thermoplastic composites-rapid processing applications. Compos A 27(4):329–336

    Article  Google Scholar 

  • Pan B, Cui D, Xu P et al (2009) Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology. https://doi.org/10.1088/0957-4484/20/12/125101

    Article  Google Scholar 

  • Pang H, Xu L, Yan DX et al (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39(11):1908–1933

    Article  Google Scholar 

  • Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57

    Article  Google Scholar 

  • Pedrazzoli D, Pegoretti A, Thomann R et al (2015) Toughening linear low-density polyethylene with halloysite nanotubes. Polym Compos 36(5):869–883

    Article  Google Scholar 

  • Pirlot C, Mekhalif Z, Fonseca A et al (2003) Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams. Chem Phys Lett 372(3–4):595–602

    Article  Google Scholar 

  • Ponnamma D, Sadasivuni KK, Strankowski M et al (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9(43):10343–10353

    Article  Google Scholar 

  • Ponnamma D, Sung SH, Hong JS et al (2014) Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites. Eur Polym J 53:147–159

    Article  Google Scholar 

  • Prashantha K, Lacrampe M, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5(4):295–307

    Article  Google Scholar 

  • Qiao X, Na M, Gao P et al (2017) Halloysite nanotubes reinforced ultrahigh molecular weight polyethylene nanocomposite films with different filler concentration and modification. Polym Test 57:133–140

    Article  Google Scholar 

  • Ramontja J, Ray SS, Pillai SK et al (2009) High-performance carbon nanotube-reinforced bioplastic. Macromol Mater Eng 294(12):839–846

    Article  Google Scholar 

  • Raquez JM, Deléglise M, Lacrampe MF et al (2010) Thermosetting (bio) materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509

    Article  Google Scholar 

  • Rastogi R, Kaushal R, Tripathi S et al (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428

    Article  Google Scholar 

  • Rooj S, Das A, Thakur V et al (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31(4):2151–2156

    Article  Google Scholar 

  • Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644

    Article  Google Scholar 

  • Sadasivuni KK, Ponnamma D, Thomas S et al (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780

    Article  Google Scholar 

  • Saharudin MS, Wei J, Shyha I et al (2016) The degradation of mechanical properties in halloysite nanoclay-polyester nanocomposites exposed in seawater environment. J Nanomater. https://doi.org/10.1155/2016/2604631

    Article  Google Scholar 

  • Sahnoune M, Taguet A, Otazaghine B et al (2017) Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. Eur Polym J 90:418–430

    Article  Google Scholar 

  • Sahoo NG, Rana S, Cho JW et al (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867

    Article  Google Scholar 

  • Saif MJ, Naveed M, Zia KM et al (2016) Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites-insight study. Radiat Phys Chem 127:115–121

    Article  Google Scholar 

  • Sandler J, Shaffer M, Prasse T et al (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40(21):5967–5971

    Article  Google Scholar 

  • Shao H, Gao M, Kim SH et al (2011) Aqueous self-assembly of l-lysine-based amphiphiles into 1D n-type nanotubes. Chem A Eur J 17(46):12882–12885

    Article  Google Scholar 

  • Shearer G, Tzoganakis C (1999) Analysis of mixing during melt-melt blending in twin screw extruders using reactive polymer tracers. Polym Eng Sci 39(9):1584–1596

    Article  Google Scholar 

  • Shearer G, Tzoganakis C (2001) Distributive mixing profiles for co-rotating twin-screw extruders. Adv Polym Technol 20(3):169–190

    Article  Google Scholar 

  • Shi Y, Li Y, Wu J et al (2011) Toughening of poly (l-lactide)/multiwalled carbon nanotubes nanocomposite with ethylene-co-vinyl acetate. J Polym Sci Part B Polym Phys 49(4):267–276

    Article  Google Scholar 

  • Shubhra QT, Alam A (2011) Effect of gamma radiation on the mechanical properties of natural silk fiber and synthetic E- glass fiber reinforced polypropylene composites: a comparative study. Radiat Phys Chem 80(11):1228–1232

    Article  Google Scholar 

  • Singh RP, Jain S, Ramarao P (2013) Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant. J Nanopart Res. https://doi.org/10.1007/s11051-013-1985-7

  • Singh VP, Vimal K, Kapur G et al (2016) High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. J Polym Res. https://doi.org/10.1007/s10965-016-0937-1

  • Song W, Zheng Z, Lu H et al (2008) Incorporation of multi-walled carbon nanotubes into biodegradable telechelic prepolymers. Macromol Chem Phys 209(3):315–321

    Article  Google Scholar 

  • Soradech S, Limatvapirat S, Luangtana-anan M (2013) Stability enhancement of shellac by formation of composite film: effect of gelatin and plasticizers. J Food Eng 116(2):572–580

    Article  Google Scholar 

  • Stephen R, Thomas S (2010) Nanocomposites: state of the art, new challenges and opportunities. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties, and applications, 1st edn. Wiley, Singapore, pp 1–20

    Google Scholar 

  • Subramaniam K, Das A, Simon F et al (2013) Networking of ionic liquid modified CNTs in SSBR. Eur Polym J 49(2):345–352

    Article  Google Scholar 

  • Sui G, Zhong W, Yang X et al (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292(9):1020–1026

    Article  Google Scholar 

  • Sui G, Zhong W, Yang X et al (2008) Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater Sci Eng A 485(1–2):524–531

    Article  Google Scholar 

  • Szpilska K, Czaja K, KudÅ‚a S (2015) Halloysite nanotubes as polyolefin fillers. Polimery 60:359–371

    Article  Google Scholar 

  • Tarachiwin L, Sakdapipanich J, Ute K et al (2005) Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 6(4):1858–1863

    Article  Google Scholar 

  • Terrones M, Hsu W, Schilder A et al (1998) Novel nanotubes and encapsulated nanowires. Appl Phys A Mater Sci Process 66(3):307–317

    Article  Google Scholar 

  • Therias S, Murariu M, Dubois P (2017) Bionanocomposites based on PLA and halloysite nanotubes: from key properties to photooxidative degradation. Polym Degrad Stab 145:60–69

    Article  Google Scholar 

  • Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  • Thostenson ET, Ziaee S, Chou TW (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Compos Sci Technol 69(6):801–804

    Article  Google Scholar 

  • Touny AH, Lawrence JG, Jones AD (2010) Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. J Mater Res 25(5):857–865

    Article  Google Scholar 

  • Vahedi V, Pasbakhsh P, Chai SP (2015) Toward high performance epoxy/halloysite nanocomposites: new insights based on rheological, curing, and impact properties. Mater Des 68:42–53

    Article  Google Scholar 

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    Article  Google Scholar 

  • Varghese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer 44(17):4921–4927

    Article  Google Scholar 

  • Vast L, Philippin G, Destree A et al (2004) Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes. Nanotechnology 15(7):781

    Article  Google Scholar 

  • Velasco-Santos C, Martinez-Hernandez A, Lozada-Cassou M et al (2002) Chemical functionalization of carbon nanotubes through an organosilane. Nanotechnology 13(4):495–498

    Article  Google Scholar 

  • Vichchulada P, Cauble MA, Abdi EA et al (2010) Sonication power for length control of single-walled carbon nanotubes in aqueous suspensions used for 2-dimensional network formation. J Phys Chem C 114(29):12490–12495

    Article  Google Scholar 

  • Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49(16):3500–3509

    Article  Google Scholar 

  • Wan X, Zhan Y, Zeng G et al (2017) Nitrile functionalized halloysite nanotubes/poly(arylene ether nitrile) nanocomposites: Interface control, characterization, and improved properties. Appl Surf Sci 393:1–10

    Article  Google Scholar 

  • Wang B, Huang HX (2013) Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab 98(9):1601–1608

    Article  Google Scholar 

  • Wang B, Huang HX (2014) Incorporation of halloysite nanotubes into PVDF matrix: nucleation of electroactive phase accompany with significant reinforcement and dimensional stability improvement. Compos A 66:16–24

    Article  Google Scholar 

  • Wang J, Chu H, Li Y (2008) Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2(12):2540–2546

    Article  Google Scholar 

  • Wang S, Chang K, Yuan C (2009) Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim Acta 54(21):4937–4943

    Article  Google Scholar 

  • Wang J, Liu J, Zhou Y et al (2013) One-pot facile synthesis of hierarchical hollow microspheres constructed with MnO2 nanotubes and their application in lithium storage and water treatment. RSC Adv 3(48):25937–25943

    Article  Google Scholar 

  • Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48(15):4449–4458

    Article  Google Scholar 

  • Wu D, Wu L, Zhang M et al (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93(8):1577–1584

    Article  Google Scholar 

  • Wu D, Zhang Y, Zhang M et al (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/ polylactide blend. Biomacromol 10(2):417–424

    Article  Google Scholar 

  • Wu M, Huang HX, Tong J (2016a) Enhancing β-phase content and tensile properties in poly(vinylidene fluoride) by adding halloysite nanotubes and injecting water during extrusion. Mater Des 108:761–768

    Article  Google Scholar 

  • Wu Y, Du Z, Wang H et al (2016b) Preparation of waterborne polyurethane nanocomposite reinforced with halloysite nanotubes for coating applications. J Appl Polym Sci. https://doi.org/10.1002/app.43949

  • Xiao K, Zhang L (2004) The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J Mater Sci 39(14):4481–4486

    Article  Google Scholar 

  • Yang LP, Pan CY (2008) A non-covalent method to functionalize multi-walled carbon nanotubes using six-armed star poly(l-lactic acid) with a triphenylene core. Macromol Chem Phys 209(8):783–793

    Article  Google Scholar 

  • Yang Z, Huang X, Zhao Q et al (2012) Hydrogen-bonded 1D nanotubes and 2D layers of group 12 metal complexes with a pyridylurea ligand. Cryst Eng Comm 14(17):5446–5453

    Article  Google Scholar 

  • Ye Y, Chen H, Wu J et al (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48(21):6426–6433

    Article  Google Scholar 

  • Ye J, Zhang H, Yang R et al (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2):296–306

    Article  Google Scholar 

  • Yoon JT, Jeong YG, Lee SC et al (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20(7):631–638

    Article  Google Scholar 

  • Yu J, Grossiord N, Koning CE et al (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623

    Article  Google Scholar 

  • Yuan Q, Misra R (2006) Polymer nanocomposites: current understanding and issues. Mater Sci Technol 22(7):742–755

    Article  Google Scholar 

  • Zou J, Zhang YC, Huang J et al (2009) Preparation and properties of PP/PLA/multiwall carbon nanotube composites filaments obtained by melt compounding. Mater Sci Forum 620–622:465–468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azman Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, N.K. et al. (2019). Nanotube/Biopolymer Nanocomposites. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics