Skip to main content

Bacterial Cellulose Nanocomposites

  • Chapter
  • First Online:
Bio-based Polymers and Nanocomposites

Abstract

Bacterial cellulose (BC) is a biopolymer with high purity of cellulose and excellent mechanical properties. Increased interest in the use of natural polymer makes BC as an excellent alternative for plant cellulose. Although both celluloses consist of unbranched pellicle with chemically equivalent structure, bacterial cellulose exhibits greater properties and potential in wider applications. The structure of bacterial cellulose that consists only glucose monomer and nanosized cellulose fibres secreted by the bacteria induces it to have high water-holding capacity, high crystallinity, high degree of polymerization and high mechanical strength. Furthermore, the characterization of BC can be certainly altered by incorporation with materials that are not essential for the bacterial growth into the fermentation medium. This unique property of BC opens a new gate for the development of new cellulose nanocomposites with desired properties by the incorporation of selective suitable materials. The BC nanocomposites produced opens new opportunity for various usages of BC in different fields of application in the pharmaceutical, chemical, medical and wastewater treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimov RI, Khripunov AK, Tkachenkob AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151

    Article  Google Scholar 

  • Amin MCM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41(5):561–568

    Google Scholar 

  • Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, JAllain JP (2016) Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp 26:111

    Google Scholar 

  • Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418

    Article  Google Scholar 

  • Barud HGO, Barud HS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, de Oliveira Almeida Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2016) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Google Scholar 

  • Bertocchi C, Delneri D, Signore S, Weng Z, Bruschi CV (1997) Characterization of microbial cellulose from a high-producing mutagenized Acetobacter pasteurianus strain. Biochem Biophys Acta 1336:211–217

    Article  Google Scholar 

  • Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetics aspects of bacterial cellulose formation in nata de coco culture system. Carbohydr Polym 40:137–143

    Article  Google Scholar 

  • Busuioc C, Stroescu M, Stoica-Guzun A, Voicu G, Jinga SI (2016) Fabrication of 3D calcium phosphates based scaffolds using bacterial cellulose as template. Ceram Int 42(14):15449–15458

    Article  Google Scholar 

  • Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367

    Article  Google Scholar 

  • Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359

    Article  Google Scholar 

  • Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3(12)

    Google Scholar 

  • Czaja W, Romanovicz D, Brown RM Jr (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):401–411

    Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wound. Biomaterials 27:145–151

    Article  Google Scholar 

  • da Silva R, Sierakowski MR, Bassani HP, Zawadzki SF, Pirich CL, Ono L, de Freitas RA (2016) Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol. Int J Biol Macromol 86:599–605

    Article  Google Scholar 

  • Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453

    Article  Google Scholar 

  • De Wulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in keto gluconate synthesis. J Chem Technol Biotechnol 67:665–672

    Google Scholar 

  • Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923

    Article  Google Scholar 

  • Feng Y, Zhanga X, Shena Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649

    Article  Google Scholar 

  • Fijałkowski K, Żywicka A, Drozd R, Niemczyk A, Junka AF, Peitler D, Kordas M, Konopacki M, Szymczyk P, Fray ME, Rakoczy R (2015) A modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohydr Polym 133:52–60

    Article  Google Scholar 

  • Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467

    Article  Google Scholar 

  • Fu L, Zhang Y, Zhang J, Yang G (2011) Bacterial cellulose for skin repair materials. In: Fazel-Rezai R (ed) Biomedical engineering—frontiers and challenges. In-Tech.Rijeka, Croatia

    Google Scholar 

  • Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocolloids 36:204–211

    Article  Google Scholar 

  • Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strømme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48(26):7623–7631

    Article  Google Scholar 

  • George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy SS (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292

    Article  Google Scholar 

  • Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64(15):2407–2413

    Article  Google Scholar 

  • González-Sánchez C, Martínez-Aguirre A, Pérez-García B, Martínez-Urreaga J, de la Orden MU, Fonseca-Valero C (2014) Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. J Clean Prod 83:228–237

    Article  Google Scholar 

  • Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377(1):88–93

    Article  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    Article  Google Scholar 

  • Horii F, Yamamoto H, Hirai A (1997) Microstructural analysis of microfibrils of bacterial cellulose. Macromol Symp 120:197–205

    Article  Google Scholar 

  • Hsieh JT, Wang MJ, Lai JT, Liu HS (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J Taiwan Inst Chem Eng 63:46–51

    Article  Google Scholar 

  • Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8845

    Article  Google Scholar 

  • Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRCS in agitated culture. J Biosci Bioeng 88(2):183–188

    Article  Google Scholar 

  • Iguchi M, Huang HC, Chen LC, Lina SB, Chen HH (2011) Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydr Polym 83:979–987

    Article  Google Scholar 

  • Jeon S, Yoo YM, Park JW, Kim HJ, Hyun J (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14(12):1621–1624

    Article  Google Scholar 

  • Jonas R, Farah LF (1997) Production and application of microbial cellulose. J Polym Degrad Stab 59:101–106

    Article  Google Scholar 

  • Juncu G, Stoica-Guzun A, Stroescu M, Isopencu G, Jinga SI (2015) Drug release kinetics from carboxymethyl cellulose-bacterial cellulose composite films. Int J Pharm 510(2):485–492

    Article  Google Scholar 

  • Khairul AZ, Norhayati P, Ida IM (2016) An evaluation of fermentation period and discs rotation speed of rotary discs reactor for bacterial cellulose production. Sains Malaysiana 45(3):393–400

    Google Scholar 

  • Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW (2006) Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol 129–132:705–715

    Article  Google Scholar 

  • Kim J, Cai Z, Lee HS, Choi GS (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744

    Article  Google Scholar 

  • Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155

    Article  Google Scholar 

  • Kiziltas EE, Kiziltas A, Rhodes K, Emanetoglu NW, Blumentritt M, Gardner DJ (2016) Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydr Polym 136:1144–1151

    Article  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  Google Scholar 

  • Lee RL, Paul JW, Willem HZ, Isak SP (2002) Microbial cellulose utilization: fundamentals and biotechnology. J Microbiol Mol Biol Rev 66(3):506–577

    Article  Google Scholar 

  • Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80

    Article  Google Scholar 

  • Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315

    Article  Google Scholar 

  • Li Z, Zhu BJ, Yang JX, Peng K, Zhou BH, Xu RQ, Hu WL, Chen SY, Wang HP (2011) Method for manufacture of bacterial cellulose hydrogel cold pack. CN Patent No 201020239963.4

    Google Scholar 

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611

    Article  Google Scholar 

  • Liyaskina E, Revin V, Paramonova E, Nazarkina M, Pestov N, Revina N, Kolesnikova S (2017) Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J Phys Conf Ser 784:(1)

    Article  Google Scholar 

  • Lu M, Li YY, Guan XH, Wei DZ (2010) Preparation of bacterial cellulose and its adsorption of Cd2+. J Northeast Univ 31(8):1196–1199

    Google Scholar 

  • Lu M, Guan XH, Xu X, Wei D (2013) Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chin Chem Lett 24:253–256

    Article  Google Scholar 

  • Lu M, Zhang YM, Guan XH, Xu X, Gao T (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Metals Soc China 24:1912–1917

    Article  Google Scholar 

  • Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y (2017) Advanced nano- and bio-materials: a pharmaceutical approach bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254

    Article  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082

    Article  Google Scholar 

  • Mormino R, Bungay H (2003) Composites of bacterial cellulose and papermade with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506

    Article  Google Scholar 

  • Muller D, Rambo CR, Recouvreux DOS, Porto LM (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111

    Article  Google Scholar 

  • Muller D, Mandelli JS, Marins JA, Soares BG (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654

    Article  Google Scholar 

  • Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592

    Article  Google Scholar 

  • Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128

    Article  Google Scholar 

  • Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85(6):598–603

    Article  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724

    Article  Google Scholar 

  • Pa’e N (2009) Rotary discs reactor for enhanced production microbial cellulose. Master thesis, Universiti Teknologi Malaysia, Skudai

    Google Scholar 

  • Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from acetobacter xylinum using different fermentation methods. Int J Eng Technol (IJET-IJEN) 11(5):90–98

    Google Scholar 

  • Pa’e N, Zahan KA, Muhamada II, Kok FS (2013) Modified fermentation for production of bacterial cellulose/polyaniline as conductive biopolymer material. Jurnal Teknologi 62(2):21–23

    Google Scholar 

  • Park M, Cheng J, Choi J, Kim J, Hyun J (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B 102:238–242

    Article  Google Scholar 

  • Pavaloiu RD, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124

    Article  Google Scholar 

  • Paximada P, Dimitrakopoulou EA, Tsouko E, Koutinas AA, Fasseas C, Mandala IG (2016) Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydr Polym 150:5–12

    Article  Google Scholar 

  • Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760

    Article  Google Scholar 

  • Piccinno F, Hischier R, Saba A, Mitrano D, Seeger S, Som C (2015) Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. J Clean Prod 112:1199–1210

    Article  Google Scholar 

  • Pircher N, Veigel S, Aignea N, Nedelecc JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513

    Article  Google Scholar 

  • Ruka DR, Simon GP, Deana KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723

    Article  Google Scholar 

  • Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7(13):7373–7381

    Article  Google Scholar 

  • Saibuatong O, Phisalaphong M (2010) Novo aloe vera—bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460

    Article  Google Scholar 

  • Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014) Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Mater Res Innovations 18:322–325

    Article  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11:123–129

    Google Scholar 

  • Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760

    Article  Google Scholar 

  • Shah J, Brown RM Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355

    Article  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  Google Scholar 

  • Shanshan G, Jianqing W, Zhengwei J (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym 87(2):1020–1025

    Article  Google Scholar 

  • Shirai A, Takahashi M, Kaneko H, Nishimura S, Ogawa M, Nishi N, Tokura S (1994) Biosynthesis of a novel polysaccharide by Acetobacter xylinum. Int J Biol Macromol 16(6):297–300

    Article  Google Scholar 

  • Slavutsky MA, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulosenanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61

    Article  Google Scholar 

  • Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272(1–2):15–27

    Article  Google Scholar 

  • Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem 33(1):1–3

    Article  Google Scholar 

  • Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Biores Technol 86(3):215–219

    Article  Google Scholar 

  • Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131

    Article  Google Scholar 

  • Toru S, Kazunori T, Masaya K, Tetsuya M, Takaaki N, Shingeru M, Kenji K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422

    Article  Google Scholar 

  • Tsuchida T, Yoshinaga F (1997) Production of bacterial cellulose by agitation culture system. J Pure Appl Chem 69(11):2453–2458

    Article  Google Scholar 

  • Tyagi N, Suresh S (2015) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80

    Article  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89(4):1189–1197

    Article  Google Scholar 

  • Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97

    Article  Google Scholar 

  • Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99

    Article  Google Scholar 

  • Wang J, Lu X, Ng PF, Lee K, Fei B, Xin JH, Wu J (2015) Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J Colloid Interface Sci 440:32–38

    Article  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  Google Scholar 

  • Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr Polym 57(4):435–440

    Article  Google Scholar 

  • Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    Article  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    Article  Google Scholar 

  • Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659–665

    Article  Google Scholar 

  • Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845

    Article  Google Scholar 

  • Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284

    Article  Google Scholar 

  • Zahan KA, Pa’e N, Muhamad II (2014) Process parameter for fermentation in rotary discs reactor for optimum microbial cellulose production using response surface methodology. Bioresources 9(2):1858–1872

    Google Scholar 

  • Zhang Z, Zhang J, Zhao X, Yang F (2015) Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon 95:552–559

    Article  Google Scholar 

  • Zhang F, Tang Y, Yang Y, Zhang X, Lee CS (2016) In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim Acta 211:404–410

    Article  Google Scholar 

  • Zhou T, Chen D, Jiu J, Nge TT (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7:756–766

    Article  Google Scholar 

  • Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C (2011) Biosynthesis of spherical Fe3O4/Bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Muhamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pa’e, N., Muhamad, I.I., Hashim, Z., Yusof, A.H.M. (2019). Bacterial Cellulose Nanocomposites. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics