Skip to main content

Fillers and Reinforcements for Advanced Nanocomposites

  • Chapter
  • First Online:
Bio-based Polymers and Nanocomposites

Abstract

The performance and properties of nanocomposites largely depend on its nanofiller and reinforcement. This chapter presents an overview of the different types of nanofiller and reinforcement in biopolymer nanocomposite. It mainly focuses on the preparation, processing, properties, and the application of the bio-nanocomposite. Bio-nanocomposite based on biopolymer such as poly(lactic acid) (PLA), poly(e-caprolactone) (PCL), poly(vinyl alcohol) (PVA), poly(hydroxybutyrate) (PHB), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), and chitosan, and nanofiller such as graphene, carbon nanotube, layered silicate reinforcement, sepiolite, and halloysite nanofiller has become a topic of discussion, and their performance and future application become a focus of interest. Enhanced mechanical and thermal properties imparted by the nanofiller reinforcement on the bio-nanocomposite and its optimum loading had been reviewed. It can be concluded that the properties of bio-nanocomposite could be further enhanced by the utilization of compatibilizer, coupling agent, and nanofiller treatment in bio-nanocomposite, which play an important role in enhancing the compatibility between the component of bio-nanocomposite and state of nanofiller dispersion and distribution in bio-nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajayan P, Stephan O, Colliex C et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265(5176):1212–1214

    Article  Google Scholar 

  • Alcântara ACS, Darder M, Aranda P et al (2014) Polysaccharide–fibrous clay bionanocomposites. Appl Clay Sci 96:2–8

    Article  Google Scholar 

  • Ambrosio-Martin J, Gorrasi G, Lopez-Rubio A et al (2015a) On the use of ball milling to develop PHBV—graphene nanocomposites (I)—morphology, thermal properties, and thermal stability. J Appl Polym Sci. https://doi.org/10.1002/app.42101

    Article  Google Scholar 

  • Ambrosio-Martin J, Gorrasi G, Lopez-Rubio A et al (2015b) On the use of ball milling to develop poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-graphene nanocomposites (II)—mechanical, barrier, and electrical properties. J Appl Polym Sci. https://doi.org/10.1002/app.42217

    Article  Google Scholar 

  • Arjmandi R, Hassan A, Haafiz MM et al (2017) Hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites: a comparative study based on formulation design. In: Cellulose-reinforced nanofibre composites. Elsevier, Netherlands, pp 25–44

    Chapter  Google Scholar 

  • Balakrishnan H, Hassan A, Wahit MU et al (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31(7):3289–3298

    Article  Google Scholar 

  • Barrett JS, Abdala AA, Srienc F (2014) Poly(hydroxyalkanoate) elastomers and their graphene nanocomposites. Macromolecules 47(12):3926–3941

    Article  Google Scholar 

  • Bocchini S, Fukushima K, Blasio AD et al (2010) Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules 11(11):2919–2926

    Article  Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155

    Article  Google Scholar 

  • Botta L, Scaffaro R, Sutera F et al (2018) Reprocessing of PLA/graphene nanoplatelets nanocomposites. Polymers. https://doi.org/10.3390/polym10010018

  • Chang JH, An YU, Cho D et al (2003) Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44(13):3715–3720

    Article  Google Scholar 

  • Chen G, Hao G, Guo T et al (2004) Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites. J Appl Polym Sci 93(2):655–661

    Article  Google Scholar 

  • Choi WM, Kim TW, Park OO et al (2003) Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)–organoclay nanocomposites. J Appl Polym Sci 90(2):525–529

    Article  Google Scholar 

  • Chrissafis K (2010) Detail kinetic analysis of the thermal decomposition of PLA with oxidized multi-walled carbon nanotubes. Thermochim Acta 511(1–2):163–167

    Article  Google Scholar 

  • Frydrych M, Wan C, Stengler R et al (2011) Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. J Mater Chem 21:9103–9111

    Article  Google Scholar 

  • Galàn E, Singer A (eds) (2011) Developments in clay science. Elsevier, Netherlands

    Google Scholar 

  • Gao Y,  Picot OT,  Bilotti E et al (2017) Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal 86:117–131

    Article  Google Scholar 

  • Giuseppe C, Giuseppe L, Stefana M (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536

    Article  Google Scholar 

  • Gorrasi G, Tortora M, Vittoria V et al (2002) Transport and mechanical properties of blends of poly(ε-caprolactone) and a modified montmorillonite poly(ε-caprolactone) nanocomposite. J Polym Sci Part B Polym Phys 40(11):1118–1124

    Article  Google Scholar 

  • Gouvêa RF, Del Aguila EM, Paschoalin VMF et al (2018) Extruded hybrids based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and reduced graphene oxide composite for active food packaging. Food Pack Shelf Life 16:77–85

    Article  Google Scholar 

  • Hassan FS, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  • Kalappa P, Benoıt L, Michel S, Marie FL, Patricia K (2013) Poly(lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. J Appl Polym Sci 128:1895–1903

    Google Scholar 

  • Kang SL, Young WC (2013) Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/halloysite nanotube nanocomposites. J Appl Polym Sci 128(5):2807–2816

    Article  Google Scholar 

  • Khandal D, Pollet E, Avérous L (2016) Elaboration and behavior of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-nano-biocomposites based on montmorillonite or sepiolite nanoclays. Eur Polym J 81:64–76

    Article  Google Scholar 

  • Killeen D, Frydrych M, Chen B (2012) Porous poly(vinyl alcohol)/sepiolite bone scaffolds: preparation, structure and mechanical properties. Mater Sci Eng C 32:749–757

    Article  Google Scholar 

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  Google Scholar 

  • Kuan C-F, Kuan HC, Ma CCM et al (2008) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69(5–6):1395–1398

    Article  Google Scholar 

  • Larissa NC, Janaina SC, Raquel SM (2011) PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Compos Part A 42:1601–1608

    Article  Google Scholar 

  • Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  • Lee H-H, Shin US, Jin GZ et al (2011) Highly homogeneous carbon nanotube-polycaprolactone composites with various and controllable concentrations of ionically-modified-MWCNTs. Bull Korean Chem Soc 32(1):157–161

    Article  Google Scholar 

  • Li MX, Kim SH, Choi SW et al (2016) Effect of reinforcing particles on hydrolytic degradation behavior of poly(lactic acid) composites. Compos Part B 96:248–254

    Article  Google Scholar 

  • Lim ST, Hyun YH, Lee CH et al (2003) Preparation and characterization of microbial biodegradable poly(3-hydroxybutyrate)/organoclay nanocomposite. J Mater Sci Lett 22(4):299–302

    Article  Google Scholar 

  • Liu M,  Pu M, Ma H (2012) Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology 72(13):1508–1514

    Article  Google Scholar 

  • Maiti P, Batt C (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Polym Mater Sci Eng 88:58–59

    Google Scholar 

  • Marius M, Anne LD, Yoann P et al (2012) Polylactide (PLA)—halloysite nanocomposites: production, morphology and key-properties. J Polym Environ 20:932–943

    Article  Google Scholar 

  • Meng Z, Zheng W, Li L et al (2010) Fabrication and characterization of three-dimensional nanofiber membrane of PCL–MWCNTs by electrospinning. Mater Sci Eng C 30(7):1014–1021

    Article  Google Scholar 

  • Mingxian L, Yun Z, Changren Z (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75–76:52–59

    Google Scholar 

  • Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23(1–4):133–139

    Article  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  Google Scholar 

  • Montagna LS, Montanheiro TLDA, Borges AC et al (2017a) Biodegradation of PHBV/GNS nanocomposites by Penicillium funiculosum. J Appl Polym Sci. https://doi.org/10.1002/app.44234

  • Montagna LS, Montanheiro TLDA, Machado JPB et al (2017b) Effect of graphite nanosheets on properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Polym Sci. https://doi.org/10.1155/2017/9316761

    Article  Google Scholar 

  • Montagna LS, Montanheiro TLDA, Passador FR et al (2018) The Influence of artificial photodegradation on properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphite nanosheets (GNS) nanocomposites. J Polym Environ 26(4):1511–1519

    Article  Google Scholar 

  • Nazir MS, Kassim MHM, Mohapatra L et al (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Nanoclay reinforced polymer composites. Springer, Berlin, pp 35–55

    Chapter  Google Scholar 

  • Nikolic MS, Petrovic R, Veljovic D et al (2017) Effect of sepiolite organomodification on the performance of PCL/sepiolite nanocomposites. Eur Polym J 97:198–209

    Article  Google Scholar 

  • Nima M, Zurina M, Nazila D (2015) Study of silane treatment on poly‐lactic acid(PLA)/sepiolite nanocomposite thin films. J Appl Polym Sci 132(6)

    Google Scholar 

  • Nuona A, Li X, Zhu X et al (2015) Starch/polylactide sustainable composites: interface tailoring with graphene oxide. Compos Part A Appl Sci Manuf 69:247–254

    Article  Google Scholar 

  • Nurbaiti AH, Mat UW, Qipeng G et al (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97

    Article  Google Scholar 

  • Ochoa M, Collazos N, Le T et al (2017) Nanocellulose-PE-b-PEG copolymer nanohybrid shish-kebab structure via interfacial crystallization. Carbohydr Polym 159:116–124

    Article  Google Scholar 

  • Ogata N, Jimenez G, Kawai H et al (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci Part B Polym Phys 35(2):389–396

    Article  Google Scholar 

  • Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  Google Scholar 

  • Pinto AM, Moreira S, Gonçalves IC et al (2013) Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf B 104:229–238

    Article  Google Scholar 

  • Pinto AM, Gonçalves C, Gonçalves IC et al (2016) Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly(lactic acid)/graphene nanoplatelets composites. Eur Polym J 85:431–444

    Article  Google Scholar 

  • Pötschke P, Andres T, Villmow T et al (2010) Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos Sci Technol 70(2):343–349

    Article  Google Scholar 

  • Prajapati V, Sharma P, Banik A (2011) Carbon nanotubes and its applications. Int J Pharm Sci Res 2(5):1099–1107

    Google Scholar 

  • Prakash K, Ratnam CT, Sivakumar M (2017) Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci 135:583–595

    Article  Google Scholar 

  • Pramanik N, De J, Basu RK et al (2016) Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv 6(52):46116–46133

    Article  Google Scholar 

  • Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351

    Article  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  Google Scholar 

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652

    Article  Google Scholar 

  • Sadasivuni KK, Ponnamma D, Thomas S et al (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780

    Article  Google Scholar 

  • Salam MA, Makki MS, Abdelaal MY (2011) Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloys Compd 509(5):2582–2587

    Article  Google Scholar 

  • Sandrine T, Marius M, Philippe D (2017) Bionanocomposites based on PLA and halloysite nanotubes: from key properties to photooxidative degradation. Polym Degrad Stab 145:60–69

    Article  Google Scholar 

  • Sridhar V, Lee I, Chun HH et al (2013) Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym Lett 7(4):320–328

    Article  Google Scholar 

  • Sun Y, He C (2012) Synthesis and stereocomplex crystallization of poly(lactide)–graphene oxide nanocomposites. ACS Macro Lett 1(6):709–713

    Article  Google Scholar 

  • Torres E, Fombuena V, Vallés-Lluch A et al (2017) Improvement of mechanical and biological properties of holycaprolactone loaded with hydroxyapatite and halloysite nanotubes. Mater Sci Eng C 75:418–424

    Article  Google Scholar 

  • Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30(25):8000–8009

    Article  Google Scholar 

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    Article  Google Scholar 

  • Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49(16):3500–3509

    Article  Google Scholar 

  • Wang SF, Shen L, Zhang WD et al (2005a) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6(6):3067–3072

    Article  Google Scholar 

  • Wang S, Song C, Chen G et al (2005b) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87(1):69–76

    Article  Google Scholar 

  • Wang BJ, Zhang YJ, Zhang JQ et al (2013) Crystallization behavior, thermal and mechanical properties of PHBV/graphene nanosheet composites. Chin J Polym Sci 31(4):670–678

    Article  MathSciNet  Google Scholar 

  • Wu D, Zhang Y, Zhang M et al (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 10(2):417–424

    Article  Google Scholar 

  • Wu D, Wu L, Zhou W et al (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B Polym Phys 48(4):479–489

    Article  Google Scholar 

  • Wu D, Lin D, Zhang J et al (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212(6):613–626

    Article  Google Scholar 

  • Wu D, Lv Q, Feng S et al (2015) Polylactide composite foams containing carbon nanotubes and carbon black: synergistic effect of filler on electrical conductivity. Carbon 95:380–387

    Article  Google Scholar 

  • Xu JZ, Chen T, Yang CL et al (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43(11):5000–5008

    Article  Google Scholar 

  • Yoon JT, Lee SC, Jeong YG (2010) Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos Sci Technol 70(5):776–782

    Article  Google Scholar 

  • Zhang J, Yang H, Shen G et al (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Comm 46(7):1112–1114

    Article  Google Scholar 

  • Zhang D, Liu X, Wu G (2016) Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Compos Sci Technol 128:8–16

    Article  Google Scholar 

  • Zine R, Sinha M (2017) Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Mater Sci Eng C 80:129–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhayani Othman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, N.K., Saidi, M.A.A., Othman, N., Zurina, M., Hassan, A. (2019). Fillers and Reinforcements for Advanced Nanocomposites. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics