Skip to main content

Online Update of Communication Maps for Exploring Multirobot Systems Under Connectivity Constraints

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

Abstract

Multirobot systems for exploring initially unknown environments are often subject to communication constraints, due to the limited range of their transmission devices and to mission requirements. In order to make decisions about where the robots should move, a communication map that encodes knowledge of the locations from which communication is possible is usually employed. Typically, simple line of sight or circle communication models (that are rather independent of the specific environment in which the exploration is carried out) are considered. In this paper, we make a step forward and present a multirobot system that learns and updates a communication map during the exploration mission. In particular, we propose methods to incrementally update vertices, corresponding to the locations visited by robots, and edges, corresponding to communication links, of a graph according to the measured power of radio-frequency signals and to the predictions made by a model based on Gaussian Processes. Experimental results obtained in simulation show that the proposed methods build and update rich communication maps specific for the environments being visited and that the availability of these maps can improve the exploration performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://wiki.ros.org/nav2d.

References

  1. Amigoni, F., Banfi, J., Basilico, N.: Multirobot exploration of communication-restricted environments: a survey. IEEE Intell. Syst. Mag. 32(6), 48–57 (2017)

    Article  Google Scholar 

  2. Andre, T., Bettstetter, C.: Collaboration in multi-robot exploration: To meet or not to meet? J. Intell. Robot Syst. 82, 325–337 (2016)

    Article  Google Scholar 

  3. Bahl, P., Padmanabhan, V.: Radar: an in-building RF-based user location and tracking system. Proc. INFOCOM. 2, 775–784 (2000)

    Google Scholar 

  4. Banfi, J., Quattrini Li, A., Basilico, N., Rekleitis, I., Amigoni, F.: Multirobot online construction of communication maps. In: Proceedings of ICRA, pp. 2577–2583 (2017)

    Google Scholar 

  5. Banfi, J., Quattrini Li, A., Rekleitis, I., Amigoni, F., Basilico, N.: Strategies for coordinated multirobot exploration with recurrent connectivity constraints. Auton. Robot 42(4), 875–894 (2017)

    Article  Google Scholar 

  6. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Robot. 27(4), 707–717 (2011)

    Article  Google Scholar 

  7. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Trans. Robot 21(3), 376–386 (2005)

    Article  Google Scholar 

  8. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multirobot exploration and mapping. P IEEE 94(7), 1325–1339 (2006)

    Article  Google Scholar 

  9. Heurtefeux, K., Valois, F.: Is RSSI a good choice for localization in wireless sensor network? In: Proceedings of AINA, pp. 732–739 (2012)

    Google Scholar 

  10. Hollinger, G., Singh, S.: Multirobot coordination with periodic connectivity: theory and experiments. IEEE Trans. Robot. 28(4), 967–973 (2012)

    Article  Google Scholar 

  11. Howard, A., Roy, N.: The robotics data set repository (Radish) (2003). http://radish.sourceforge.net/

  12. Jensen, E., Lowmanstone, L., Gini, M.: Communication-restricted exploration for search teams. In: Proceedings of DARS, pp. 17–30 (2016)

    Chapter  Google Scholar 

  13. Mukhija, P., Krishna, K., Krishna, V.: A two phase recursive tree propagation based multi-robotic exploration framework with fixed base station constraint. In: Proceedings of IROS, pp. 4806–4811 (2010)

    Google Scholar 

  14. Pandey, R., Singh, A., Krishna, K.: Multi-robot exploration with communication requirement to a moving base station. In: Proceedings of CASE, pp. 823–828 (2012)

    Google Scholar 

  15. Pei, Y., Mutka, M.: Steiner traveler: Relay deployment for remote sensing in heterogeneous multi-robot exploration. In: Proceedings of ICRA, pp. 1551–1556 (2012)

    Google Scholar 

  16. Pei, Y., Mutka, M., Xi, N.: Connectivity and bandwidth-aware real-time exploration in mobile robot networks. Wirel. Commun. Mob. Comput. 13(9), 847–863 (2013)

    Article  Google Scholar 

  17. Penumarthi, P., Quattrini Li, A., Banfi, J., Basilico, N., Amigoni, F., O’Kane, J., Rekleitis, I., Nelakuditi, S.: Multirobot exploration for building communication maps with prior from communication models. In: Proceedings of MRS, pp. 90–96 (2017)

    Google Scholar 

  18. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  19. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  20. Rooker, M., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control Eng. Pract. 15(4), 435–445 (2007)

    Article  Google Scholar 

  21. Spirin, V., Cameron, S.: Rendezvous through obstacles in multi-agent exploration. In: Proceedings of SSRR, pp. 1–6 (2014)

    Google Scholar 

  22. Spirin, V., de Hoog, J., Visser, A., Cameron, S.: MRESim, a multi-robot exploration simulator for the rescue simulation league. In: RoboCup 2014: Robot World Cup XVIII, pp. 106–117. Springer (2015)

    Google Scholar 

  23. Stump, E., Michal, N., Kumar, V., Isler, V.: Visibility-based deployment of robot formations for communication maintenance. In: Proceedings of ICRA, pp. 4498–4505 (2011)

    Google Scholar 

  24. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    Google Scholar 

  25. Vaughan, R.: Massively multiple robot simulations in Stage. Swarm Intell. 2(2–4), 189–208 (2008)

    Article  Google Scholar 

  26. Visser, A., Slamet, B.: Including communication success in the estimation of information gain for multi-robot exploration. In: Proceedings of WiOPT, pp. 680–687 (2008)

    Google Scholar 

  27. Zlot, R., Stentz, A., Dias, M., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proceedings of ICRA, pp. 3016–3023 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Amigoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amigoni, F., Banfi, J., Basilico, N., Rekleitis, I., Quattrini Li, A. (2019). Online Update of Communication Maps for Exploring Multirobot Systems Under Connectivity Constraints. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_36

Download citation

Publish with us

Policies and ethics