Skip to main content

Fault-Tolerant Covariance Intersection for Localizing Robot Swarms

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

Abstract

This paper examines the important problem of cooperative localization in robot swarms, in the presence of unmodeled errors experienced by real sensors in hardware platforms. Many existing methods for cooperative swarm localization rely on approximate distance metric heuristics based on properties of the communication graph. We present a new cooperative localization method that is based on a rigorous and scalable treatment of estimation errors generated by peer-to-peer sharing of relative robot pose information. Our approach blends Covariance Intersection and Covariance Union techniques from distributed sensor fusion theory in a novel way, in order to maintain statistical estimation consistency for cooperative localization errors. Experimental validation results show that this approach provides both reliable and accurate state estimation results for Droplet swarms in scenarios where other existing swarm localization methods cannot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The squared Mahalanobis distance between an observation, \(\mathbf {x}\) and a multinormal distribution with mean \(\mathbf {\mu }\) and covariance \(\mathbf {\Sigma }^{}_{}\) is defined as  [8].

  2. 2.

    http://github.com/correlllab/cu-droplet

  3. 3.

    Updates with a Mahalanobis distance greater than 4 (\(d>d_{\mathrm {TOSS}}\)) were still ignored.

References

  1. Al Hage, J., El Najjar, M.E., Pomorski, D.: Fault tolerant multi-sensor fusion based on the information gain. J. Phys. Conf. Ser. 783(012011) (2017) (IOP Publishing)

    Google Scholar 

  2. Arambel, P.O., Rago, C., Mehra, R.K.: Covariance intersection algorithm for distributed spacecraft state estimation. In: American Control Conference, 2001. Proceedings of the 2001, vol. 6, pp. 4398–4403. IEEE (2001)

    Google Scholar 

  3. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)

    Article  Google Scholar 

  4. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell. Syst. 21(2), 10–19 (2006)

    Article  Google Scholar 

  5. Butera, W.: Text display and graphics control on a paintable computer. In: First International Conference on Self-Adaptive and Self-Organizing Systems, 2007. SASO’07, pp. 45–54. IEEE (2007)

    Google Scholar 

  6. Carrillo-Arce, L.C., Nerurkar, E.D., Gordillo, J.L., Roumeliotis, S.I.: Decentralized multi-robot cooperative localization using covariance intersection. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1412–1417. IEEE (2013)

    Google Scholar 

  7. Cornejo, A., Nagpal, R.: Distributed range-based relative localization of robot swarms. In: Algorithmic Foundations of Robotics XI, pp. 91–107. Springer (2015)

    Google Scholar 

  8. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Article  Google Scholar 

  9. Farrow, N., Klingner, J., Reishus, D., Correll, N.: Miniature six-channel range and bearing system: algorithm, analysis and experimental validation. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6180–6185. IEEE (2014)

    Google Scholar 

  10. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Auton. Robots 8(3), 325–344 (2000)

    Article  Google Scholar 

  11. Franken, D., Hupper, A.: Improved fast covariance intersection for distributed data fusion. In: 2005 8th International Conference on Information Fusion, vol. 1, p. 7. IEEE (2005)

    Google Scholar 

  12. Gauci, M., Ortiz, M.E., Rubenstein, M., Nagpal, R.: Error cascades in collective behavior: a case study of the gradient algorithm on 1000 physical agents. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems. pp. 1404–1412. International Foundation for Autonomous Agents and Multiagent Systems (2017)

    Google Scholar 

  13. Howard, A., Matark, M.J., Sukhatme, G.S.: Localization for mobile robot teams using maximum likelihood estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 1, pp. 434–439. IEEE (2002)

    Google Scholar 

  14. Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence of unknown correlations. In: American Control Conference, 1997. Proceedings of the 1997, vol. 4, pp. 2369–2373. IEEE (1997)

    Google Scholar 

  15. Julier, S.J., Uhlmann, J.K., Nicholson, D.: A method for dealing with assignment ambiguity. In: American Control Conference, 2004. Proceedings of the 2004, vol. 5, pp. 4102–4107. IEEE (2004)

    Google Scholar 

  16. Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional powertrain for low-cost swarm robotics: mechanism, calibration, and control. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 846–851. IEEE (2014)

    Google Scholar 

  17. Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots. In: 1994 IEEE International Conference on Robotics and Automation, 1994. Proceedings, pp. 1250–1257. IEEE (1994)

    Google Scholar 

  18. Luft, L., Schubert, T., Roumeliotis, S.I., Burgard, W.: Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication. Int. J. Robot. Res. 0278364918760698 (2018)

    Google Scholar 

  19. Ma, D., Er, M.J., Wang, B., Lim, H.B.: Range-free wireless sensor networks localization based on hop-count quantization. Telecommun. Syst. 50(3), 199–213 (2012)

    Article  Google Scholar 

  20. Merkel, S., Mostaghim, S., Schmeck, H.: Distributed geometric distance estimation in ad hoc networks. In: Ad-Hoc, Mobile, and Wireless Networks, pp. 28–41. Springer (2012)

    Google Scholar 

  21. Nerurkar, E.D., Roumeliotis, S.I., Martinelli, A.: Distributed maximum a posteriori estimation for multi-robot cooperative localization. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pp. 1402–1409. IEEE (2009)

    Google Scholar 

  22. Pires, A.G., Macharet, D.G., Chaimowicz, L.: Towards cooperative localization in robotic swarms. In: Distributed Autonomous Robotic Systems, pp. 105–118. Springer (2016)

    Google Scholar 

  23. Prorok, A., Bahr, A., Martinoli, A.: Low-cost collaborative localization for large-scale multi-robot systems. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4236–4241. IEEE (2012)

    Google Scholar 

  24. Reece, S., Roberts, S.: Generalised covariance union: a unified approach to hypothesis merging in tracking. IEEE Trans. Aerosp. Electron. Syst. 46(1) (2010)

    Article  Google Scholar 

  25. Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)

    Article  Google Scholar 

  26. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)

    Google Scholar 

  27. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  28. Sijs, J., Lazar, M.: State fusion with unknown correlation: ellipsoidal intersection. Automatica 48(8), 1874–1878 (2012)

    Article  MathSciNet  Google Scholar 

  29. Uhlmann, J.K.: Covariance consistency methods for fault-tolerant distributed data fusion. Inf. Fusion 4(3), 201–215 (2003)

    Article  Google Scholar 

  30. Wang, S., Colas, F., Liu, M., Mondada, F., Magnenat, S.: Localization of inexpensive robots with low-bandwidth sensors. In: Distributed Autonomous Robotic Systems, pp. 545–558. Springer (2018)

    Google Scholar 

  31. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired sensor network synchronicity with realistic radio effects. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 142–153. ACM (2005)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by NSF grant #1150223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Klingner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klingner, J., Ahmed, N., Correll, N. (2019). Fault-Tolerant Covariance Intersection for Localizing Robot Swarms. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_34

Download citation

Publish with us

Policies and ethics