Skip to main content

Stop, Think, and Roll: Online Gain Optimization for Resilient Multi-robot Topologies

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Abstract

Efficient networking of many-robot systems is considered one of the grand challenges of robotics. In this article, we address the problem of achieving resilient, dynamic interconnection topologies in multi-robot systems. In scenarios in which the overall network topology is constantly changing, we aim at avoiding the onset of single points of failure, particularly situations in which the failure of a single robot causes the loss of connectivity for the overall network. We propose a method based on the combination of multiple control objectives and we introduce an online distributed optimization strategy that computes the optimal choice of control parameters for each robot. This ensures that the connectivity of the multi-robot system is not only preserved but also made more resilient to failures, as the network topology evolves. We provide simulation results, as well as experiments with real robots to validate theoretical findings and demonstrate the portability to robotic hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pathological situations may exist in which (10) is not well defined, namely when \(p_i = x_\beta ^i\). However, this corresponds to the case where the i-th robot is exactly in the barycenter of its weakly connected 2-hop neighbors: in practice, this never happens when a robot detects itself as vulnerable.

  2. 2.

    https://www.k-team.com/mobile-robotics-products/khepera-iv

  3. 3.

    https://optitrack.com/products/prime-13/specs.html

  4. 4.

    https://github.com/MISTLab/blabbermouth

  5. 5.

    https://github.com/MISTLab/BuzzKH4

References

  1. Avriel, M.: Nonlinear Programming: Analysis and Methods. Courier Corporation (2003)

    Google Scholar 

  2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  3. Gasparri, A., Sabattini, L., Ulivi, G.: Bounded control law for global connectivity maintenance in cooperative multi-robot systems. IEEE Trans. Robot. 33(3), 700–717 (2017)

    Article  Google Scholar 

  4. Ghedini, C., Ribeiro, C.H.C., Sabattini, L.: Toward efficient adaptive ad-hoc multi-robot network topologies. Ad Hoc Netw. 74, 57–70 (2018)

    Article  Google Scholar 

  5. Ghedini, C., Secchi, C., Ribeiro, C.H.C., Sabattini, L.: Improving robustness in multi-robot networks. In: Proceedings of the IFAC Symposium on Robot Control (SYROCO), Salvador, Brazil, Aug 2015

    Google Scholar 

  6. Ghedini, C., Ribeiro, C., Sabattini, L.: Toward fault-tolerant multi-robot networks. Networks 70(4), 388–400 (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21784

    Article  MathSciNet  Google Scholar 

  7. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer (2001)

    Google Scholar 

  8. Ji, M., Egerstedt, M.: Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans. Robot. (2007)

    Google Scholar 

  9. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. Network Analysis, pp. 16–61. Springer (2005)

    Google Scholar 

  10. Panerati, J., Minelli, M., Ghedini, C., Meyer, L., Kaufmann, M., Beltrame, G., Sabattini, L.: Robust connectivity maintenance for fallible robots. Autonomous Robots (2018). https://doi.org/10.1007/s10514-018-9812-8

  11. Panerati, J., Beltrame, G.: A comparative evaluation of multi-objective exploration algorithms for high-level design. ACM Trans. Des. Autom. Electron. Syst. 19(2), 15:1–15:22 (2014)

    Article  Google Scholar 

  12. Pinciroli, C., Beltrame, G.: Swarm-oriented programming of distributed robot networks. Computer 49(12), 32–41 (2016)

    Article  Google Scholar 

  13. Pinciroli, C., Lee-Brown, A., Beltrame, G.: A tuple space for data sharing in robot swarms. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (Formerly BIONETICS), pp. 287–294, BICT’15, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium (2016). https://doi.org/10.4108/eai.3-12-2015.2262503

  14. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: Argos: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5

    Article  Google Scholar 

  15. Poonawala, H.A., Spong, M.W.: Decentralized estimation of the algebraic connectivity for strongly connected networks. In: American Control Conference (ACC), pp. 4068–4073. IEEE (2015)

    Google Scholar 

  16. Robuffo Giordano, P., Franchi, A., Secchi, C., Bülthoff, H.H.: A passivity-based decentralized strategy for generalized connectivity maintenance. Int. J. Robot. Res. 32(3), 299–323 (2013)

    Article  Google Scholar 

  17. Sabattini, L., Chopra, N., Secchi, C.: Decentralized connectivity maintenance for cooperative control of mobile robotic systems. Int. J. Robot. Res. (SAGE) 32(12), 1411–1423 (2013)

    Article  Google Scholar 

  18. Sabattini, L., Secchi, C., Chopra, N., Gasparri, A.: Distributed control of multi-robot systems with global connectivity maintenance. IEEE Trans. Robot. 29(5), 1326–1332 (2013)

    Article  Google Scholar 

  19. Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis : Methods and Applications (Structural Analysis in the Social Sciences). Cambridge University Press (1994)

    Google Scholar 

  20. Yang, G.Z., Bellingham, J., Dupont, P.E., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., et al.: The grand challenges of science robotics. Sci. Robot. 3(14), eaar7650 (2018)

    Article  Google Scholar 

  21. Yang, P., Freeman, R.A., Gordon, G.J., Lynch, K.M., Srinivasa, S.S., Sukthankar, R.: Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica 46(2), 390–396 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sabattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Minelli, M., Kaufmann, M., Panerati, J., Ghedini, C., Beltrame, G., Sabattini, L. (2019). Stop, Think, and Roll: Online Gain Optimization for Resilient Multi-robot Topologies. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_25

Download citation

Publish with us

Policies and ethics