Skip to main content

Supercomputer Simulation Study of the Convergence of Iterative Methods for Solving Inverse Problems of 3D Acoustic Tomography with the Data on a Cylindrical Surface

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Included in the following conference series:

Abstract

This paper is dedicated to developing effective methods of 3D acoustic tomography. The inverse problem of acoustic tomography is formulated as a coefficient inverse problem for a hyperbolic equation where the speed of sound and the absorption factor in three-dimensional space are unknown. Substantial difficulties in solving this inverse problem are due to its nonlinear nature. A method which uses short sounding pulses of two different central frequencies is proposed. The method employs an iterative parallel gradient-based minimization algorithm at the higher frequency with the initial approximation of unknown coefficients obtained by solving the inverse problem at the lower frequency. The efficiency of the proposed method is illustrated via a model problem. In the model problem an easy to implement 3D tomographic scheme is used with the data specified at a cylindrical surface. The developed algorithms can be efficiently parallelized using GPU clusters. Computer simulations show that a GPU cluster capable of performing 3D image reconstruction within reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Parallel CPU- and GPU-algorithms for inverse problems in nondestructive testing. Lobachevskii J. Math. 39(4), 486–493 (2018). https://doi.org/10.1134/S1995080218040030

    Article  MathSciNet  MATH  Google Scholar 

  2. Beilina, L., Klibanov, M.V., Kokurin, M.Y.: Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem. J. Math. Sci. 167(3), 279–325 (2010). https://doi.org/10.1007/s10958-010-9921-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Boehm, C., Martiartu, N.K., Vinard, N., Balic, I.J., Fichtner, A.: Time-domain spectral-element ultrasound waveform tomography using a stochastic quasi-newton method. In: Proceedings of SPIE 10580, Medical Imaging 2018: Ultrasonic Imaging and Tomography p. 105800H, March 2018. https://doi.org/10.1117/12.2293299

  4. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67, 136–150 (2016). https://doi.org/10.1016/j.ultras.2016.01.008

    Article  Google Scholar 

  5. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Supercomputer technologies in tomographic imaging applications. Supercomput. Front. Innov. 3(1), 41–66 (2016). https://doi.org/10.14529/jsfi160103

    Article  Google Scholar 

  6. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency three-dimensional ultrasonic tomography. Doklady Phys. 61(5), 211–214 (2016). https://doi.org/10.1134/s1028335816050086

    Article  Google Scholar 

  7. Goncharsky, A.V., Seryozhnikov, S.Y.: The architecture of specialized GPU clusters used for solving the inverse problems of 3D low-frequency ultrasonic tomography. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. Communications in Computer and Information Science, vol. 793, pp. 363–395. Springer, Cham. (2017). https://doi.org/10.1007/978-3-319-71255-0_29

    Chapter  Google Scholar 

  8. Goncharsky, A.V., Romanov, S.Y.: Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Probl. 29(7), 075004 (2013). https://doi.org/10.1088/0266-5611/29/7/075004

    Article  MathSciNet  MATH  Google Scholar 

  9. Goncharsky, A.V., Romanov, S.Y.: Inverse problems of ultrasound tomography in models with attenuation. Phys. Med. Biol. 59(8), 1979–2004 (2014). https://doi.org/10.1088/0031-9155/59/8/1979

    Article  Google Scholar 

  10. Goncharsky, A.V., Romanov, S.Y.: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Probl. 33(2), 025003 (2017). https://doi.org/10.1088/1361-6420/33/2/025003

    Article  MathSciNet  MATH  Google Scholar 

  11. Goncharsky, A., Romanov, S., Seryozhnikov, S.: Inverse problems of 3D ultrasonic tomography with complete and incomplete range data. Wave Motion 51(3), 389–404 (2014). https://doi.org/10.1016/j.wavemoti.2013.10.001

    Article  MathSciNet  Google Scholar 

  12. Jirik, R., et al.: Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography. IEEE T. Ultrason. Ferr. 59(2), 254–264 (2012)

    Article  Google Scholar 

  13. Klibanov, M.V., Timonov, A.A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Walter de Gruyter GmbH, january 2004

    Google Scholar 

  14. Kuzhuget, A.V., Beilina, L., Klibanov, M.V., Sullivan, A., Nguyen, L., Fiddy, M.A.: Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm. Inverse Probl. 28(9), 095007 (2012). https://doi.org/10.1088/0266-5611/28/9/095007

    Article  MATH  Google Scholar 

  15. Mu, S.Y., Chang, H.W.: Dispersion and local-error analysis of compact LFE-27 formulas for obtaining sixth-order accurate numerical solutions of 3D Helmholz equation. Pr. Electromagn. Res. S. 143, 285–314 (2013)

    Article  Google Scholar 

  16. Natterer, F.: Possibilities and limitations of time domain wave equation imaging. In: AMS Vol. 559: Tomography and Inverse Transport Theory, pp. 151–162. American Mathematical Society (2011). https://doi.org/10.1090/conm/559

  17. Natterer, F.: Sonic imaging. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 1–23. Springer Nature, New York (2014). https://doi.org/10.1007/978-3-642-27795-5_37-2

    Chapter  Google Scholar 

  18. Romanov, S.: Optimization of numerical algorithms for solving inverse problems of ultrasonic tomography on a supercomputer. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. Communications in Computer and Information Science, vol. 793, pp. 67–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_6

    Chapter  Google Scholar 

  19. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “Lomonosov”: supercomputing at Moscow State University. In: Vetter, J. (ed.) Contemporary High Performance Computing: From Petascale toward Exascale, pp. 283–307. Chapman & Hall/CRC Computational Science, CRC Press, Boca Raton (2013)

    Google Scholar 

  20. Saha, R.K., Sharma, S.K.: Validity of a modified Born approximation for a pulsed plane wave in acoustic scattering problems. Phys. Med. Biol. 50(12), 2823 (2005)

    Article  Google Scholar 

  21. Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017)

    Article  Google Scholar 

  22. Schmidt, S., Duric, N., Li, C., Roy, O., Huang, Z.F.: Modification of Kirchhoff migration with variable sound speed and attenuation for acoustic imaging of media and application to tomographic imaging of the breast. Med. Phys. 38(2), 998–1007 (2011). https://doi.org/10.1118/1.3539552

    Article  Google Scholar 

  23. Wiskin, J.W., Borup, D.T., Iuanow, E., Klock, J., Lenox, M.W.: 3-D nonlinear acoustic inverse scattering: Algorithm and quantitative results. EEE Trans. Ultrason. Ferroelectr. Freq. Control 64(8), 1161–1174 (2017)

    Article  Google Scholar 

  24. Zeqiri, B., Baker, C., Alosa, G., Wells, P.N.T., Liang, H.D.: Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors. Phys. Med. Biol. 58(15), 5237 (2013). https://doi.org/10.1088/0031-9155/58/15/5237

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Russian Science Foundation [grant number 17-11-01065]. The research is carried out at Lomonosov Moscow State University. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Romanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romanov, S. (2019). Supercomputer Simulation Study of the Convergence of Iterative Methods for Solving Inverse Problems of 3D Acoustic Tomography with the Data on a Cylindrical Surface. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics